Interpersonal differences can be observed in the human cerebrospinal fluid pressure (CSFP) in the cranium in an upright body position, varying from positive to subatmospheric values. So far, these changes have been explained by the Monroe-Kellie doctrine according to which CSFP should increase or decrease if a change in at least one of the three intracranial volumes (brain, blood, and CSF) occurs. According to our hypothesis, changes in intracranial CSFP can occur without a change in the volume of intracranial fluids.
View Article and Find Full Text PDFThe goal of this paper is to design a broadband acoustic camera using micro-electromechanical system (MEMS) microphones. The paper describes how an optimization of the microphone array has been carried out. Furthermore, the final goal of the described optimization is that the gain in the desired direction and the attenuation of side lobes is maximized at a frequency up to 4 kHz.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2021
Possibilities to use unmanned aerial vehicles (UAVs) are rapidly growing. With the development of battery technologies, communication, navigation, surveillance, and autonomous systems in general, many UAVs are expected to operate at relatively low altitudes. Thus, the problem of UAV noise impact on human health and well-being will be more pronounced.
View Article and Find Full Text PDFThe paper reports and compares the results of the electromechanical, acoustical and thermodynamical characterization of a low-frequency sonotrode-type ultrasonic device inside a small sonoreactor, immersed in three different loading media, namely, water, juice and milk, excited at different excitation levels, both below and above the cavitation threshold. The electroacoustic efficiency factor determined at system resonance through electromechanical characterization in degassed water as the reference medium is 88.7% for the device in question.
View Article and Find Full Text PDFIntracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption.
View Article and Find Full Text PDFDetermination of electromechanical piezoceramic material parameters is usually done by fitting the measured input electrical impedance of the piezoceramic sample to the theoretical modelling equation for the input electrical impedance of the unloaded free piezoceramic resonator. The input electrical impedance of the sample is usually measured by using low voltage or current magnitude frequency sweeping signals. In this work, the complex material parameters of piezoceramic samples are determined in the real operating conditions by using the high voltage short impulse excitation signals.
View Article and Find Full Text PDFMeasurement of the acoustic power in high-energy ultrasonic devices is complex due to occurrence of the strong cavitation in front of the sonotrode tip. In our research we used three methods for characterization of our new ultrasonic probe for neuroendoscopic procedures. The first method is based on the electromechanical characterization of the device measuring the displacement of the sonotrode tip and input electrical impedance around excitation frequency with different amounts of the applied electrical power The second method is based on measuring the spatial pressure magnitude distribution of an ultrasound surgical device produced in an anechoic tank.
View Article and Find Full Text PDFAn electrodynamic loudspeaker has been operated in anharmonic regime indicated by the nonlinear ordinary differential equation when spring constant γ in restoring term, as well as, viscoelasticity of the membrane material, increases with displacement. For driving currents in the range of 2.8-3.
View Article and Find Full Text PDFThe theme of this work is characterization of an ultrasonic low-frequency device, driven at an excitation frequency of around 25 kHz at different electrical excitation levels by using three different methods as proposed in IEC 61847 and IEC 61088 standards. The first method is based on the electromechanical characterization of the device. It consists of measuring the input electrical impedance around the excitation frequency in the unloaded and loaded conditions at a low level excitation voltage of 1 V.
View Article and Find Full Text PDFObjective And Motivation: The method for measuring derived acoustic power of an ultrasound point source in the form of a sonotrode tip has been considered in the free acoustic field, according to the IEC 61847 standard. The main objective of this work is measuring averaged pressure magnitude spatial distribution of an sonotrode tip in the free acoustic field conditions at different electrical excitation levels and calculation of the derived acoustic power at excitation frequency (f0 approximately 25 kHz). Finding the derived acoustic power of an ultrasonic surgical device in the strong cavitation regime of working, even in the considered laboratory conditions (anechoic pool), will enable better understanding of the biological effects on the tissue produced during operation with the considered device.
View Article and Find Full Text PDFThe dynamics of an experimental electrodynamic loudspeaker is studied by using the tools of chaos theory and time series analysis. Delay time, embedding dimension, fractal dimension, and other empirical quantities are determined from experimental data. Particular attention is paid to issues of stationarity in a system in order to identify sources of uncertainty.
View Article and Find Full Text PDF