COVID-19 is a respiratory disease that, as of July 15th, 2021, has infected more than 187 million people worldwide and is responsible for more than 4 million deaths. An accurate diagnosis of COVID-19 is essential for the treatment and control of the disease. The use of computed tomography (CT) has shown to be promising for evaluating patients suspected of COVID-19 infection.
View Article and Find Full Text PDFCOVID-19 is an infectious disease caused by a newly discovered type of coronavirus called SARS-CoV-2. Since the discovery of this disease in late 2019, COVID-19 has become a worldwide concern, mainly due to its high degree of contagion. As of April 2021, the number of confirmed cases of COVID-19 reported to the World Health Organization has already exceeded 135 million worldwide, while the number of deaths exceeds 2.
View Article and Find Full Text PDFLung cancer is pointed as the major cause of death among patients with cancer throughout the world. This work is intended to develop a methodology for diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed methodology uses image processing and pattern recognition techniques.
View Article and Find Full Text PDFUsing images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), we developed a methodology for classifying lung nodules. The proposed methodology uses image processing and pattern recognition techniques. To classify volumes of interest into nodules and non-nodules, we used shape measurements only, analyzing their shape using shape diagrams, proportion measurements, and a cylinder-based analysis.
View Article and Find Full Text PDFLung cancer is the major cause of death among patients with cancer worldwide. This work is intended to develop a methodology for the diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed methodology uses image processing and pattern recognition techniques.
View Article and Find Full Text PDFBreast cancer is the second most common type of cancer in the world. Several computer-aided detection and diagnosis systems have been used to assist health experts identify suspicious areas that are difficult to perceive with the human eye, thus aiding in the detection and diagnosis of cancer. This work proposes a methodology for the discrimination and classification of regions extracted from mammograms as mass and non-mass.
View Article and Find Full Text PDFBreast cancer is the second most common type of cancer in the world. Several computer-aided detection and diagnosis systems have been used to assist health experts and to indicate suspect areas that would be difficult to perceive by the human eye; this approach has aided in the detection and diagnosis of cancer. The present work proposes a method for the automatic detection of masses in digital mammograms by using quality threshold (QT), a correlogram function, and the support vector machine (SVM).
View Article and Find Full Text PDFObjective: The present work has the objective of developing an automatic methodology for the detection of lung nodules.
Methodology: The proposed methodology is based on image processing and pattern recognition techniques and can be summarized in three stages. In the first stage, the extraction and reconstruction of the pulmonary parenchyma is carried out and then enhanced to highlight its structures.