High vacuum technology has been incorporated into a new assisted extraction system applied to virgin olive oil (VOO) processing, which was tested at a lab-scale pilot plant to evaluate its impact on the physicochemical properties of the olive paste and oil. The vacuum system induced changes in the mechanical and structural properties of the olive cells, improving the coalescence of the oil droplets due to substantial cellular and intracellular mass transfer during the process, as shown by cryo-scanning electron microscopy (Cryo-SEM) analysis. The effects on the quality characteristics of VOOs extracted from three cultivars at different malaxation temperatures were evaluated.
View Article and Find Full Text PDFPoplar callus maintained a specific difference in osmotic potential with respect to media when supplemented with different carbohydrate concentrations. This balance in osmotic potential guaranteed the growth capacity. Osmotic stress is caused by several abiotic factors such as drought, salinity, or freezing.
View Article and Find Full Text PDFOctopus vulgaris is a cephalopod of the Octopodidae family. It has four pairs of arms and two rows of suckers which perform many functions, including bending and elongation. For this reason the octopus was chosen as model to develop a new generation of soft-body robots.
View Article and Find Full Text PDFThe quality of virgin olive oil (VOO) is strictly related to the concentrations of phenolic and volatile compounds, which are strongly affected by the operative conditions of the VOO mechanical extraction process. The aim of this work is to study the impact of a new technology such as flash thermal conditioning (FTC) on olive paste structural modification and on VOO quality. The evaluation of olive paste structure modification by cryo-scanning electron microscopy (cryo-SEM) showed that the application of FTC after crushing produces significant differences in terms of the breaking of the parenchyma cells and aggregation of oil droplets in comparison to the crushed pastes.
View Article and Find Full Text PDFOlive fruits contain high concentrations of phenols that include phenolic acids, phenolic alcohols, flavonoids, and secoiridoids. The final concentration of phenols is strongly affected by brine conditions. The factors involved in modification by brine are still partially unknown and can include hydrolysis of secoiridoid glucosides and the release of hydrolyzed products.
View Article and Find Full Text PDFThe aim of this work was to investigate the olfactory system of the walking stick insect, Carausius morosus. Morphological, ultrastructural and immunocytochemical studies of adult female antennae were conducted by scanning and transmission electron microscopy. Extensive cross-section series were made through the last antennal segment to define the cuticular apparatus, wall pore distribution and the number of innervating receptor neurons of each sensillum type.
View Article and Find Full Text PDFPlants can remove or immobilize various environmental contaminants; however, little is known about the physiological mechanisms underlying responses to soil amendment with biosolids contaminated with heavy metals. We investigated the responses of cuttings of hybrid poplar clones Eridano and I-214 grown for a season in soil amended with nutrient-rich organic material from tanneries, which contains potentially toxic amounts of heavy elements. Plant growth traits, gas exchange parameters, stomatal density and leaf layer thickness of frozen-hydrated leaves, and foliar concentrations of heavy metals and nitrogen were determined.
View Article and Find Full Text PDFWe studied physiological (gas exchange and stomatal aperture) and morphological (individual leaf area and stomatal density) responses in leaves of five-year-old olive plants (Olea europaea L. cvs. Frantoio and Moraiolo) exposed to filtered air containing < 3 ppb O(3) or 100 ppb O(3) for 5 h day(-1) for 120 days in fumigation chambers.
View Article and Find Full Text PDF