https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=Antonio+Miguel+G+de+Diego%5Bauthor%5D&datetype=edat&usehistory=y&retmax=1&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579e1673ed765b60728db&query_key=1&retmode=xml&retstart=-10&retmax=25&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
This review focuses on retina degeneration occurring during glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), and on the potential therapeutic use of triads of repositioned medicines, addressed to distinct but complementary targets, to prevent, delay or stop retina cell death. Although myriad pathogenic mechanisms have been implicated in these disorders, common signaling pathways leading to apoptotic cell death to all of them, and to all neurodegenerative diseases are (i) calcium dyshomeostasis/excitotoxicity; (ii) oxidative stress/mitochondrial dysfunction, and (iii) neuroinflammation/P2X7 receptor activation. From a therapeutic point of view, it is relevant to consider the multitarget approach based on the use of combined medicines acting on complementary pathogenic mechanisms that has been highly successful in the treatment of chronic diseases such as cancer, AIDS, pain, hypertension, Parkinson's disease, cardiac failure, depression, or the epilepsies as the basic mechanisms of cell death do not differ between the different CNS degenerative diseases.
View Article and Find Full Text PDFCalcium buffering by mitochondria plays a relevant physiological function in the regulation of Ca(2+) and exocytotic signals in mature chromaffin cells (CCs) from various adult mammals. Whether a similar or different role of mitochondrial Ca(2+) buffering is present in immature CCs at early life has not been explored. Here we present a comparative study in rat embryonic CCs and rat mother CCs, of various physiological parameters that are known to be affected by mitochondrial Ca(2+) buffering during cell activation.
View Article and Find Full Text PDFAdrenal chromaffin cells (CCs) express high-voltage activated calcium channels (high-VACCs) of the L, N and PQ subtypes; in addition, T-type low-VACCs are also expressed during embryo and neonatal life. Effects of the more frequently used T channel blockers NNC 55-0396 (NNC), mibefradil, and Ni2+ on the whole-cell Ba2+ current (IBa), the K+-elicited [Ca2+]c transients and catecholamine secretion have been studied in adult bovine CCs (BCCs) and rat embryo CCs (RECCs). NNC, mibefradil, and Ni2+ blocked BCC IBa with IC50 of 1.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2014
At early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D, Cav1.
View Article and Find Full Text PDFFrom experiments performed at room temperature, we know that the buffering of Ca(2+) by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca(2+)]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca(2+) transporters and the release of catecholamine are faster at 37°C with respect to room temperature. Therefore, we planned this investigation to gain further insight into the contribution of mitochondrial Ca(2+) buffering to the shaping of [Ca(2+)]c and catecholamine release transients, using some novel experimental conditions that have not been yet explored namely: (1) perifusion of bovine chromaffin cells (BCCs) with saline at 37°C and their repeated challenging with the physiological neurotransmitter acetylcholine (ACh); (2) separate blockade of mitochondrial Ca(2+) uniporter (mCUP) with Ru360 or the mitochondrial Na(+)/Ca(2+) exchanger (mNCX) with CGP37157; (3) full blockade of the mitochondrial Ca(2+) cycling (mCC) by the simultaneous inhibition of the mCUP and the mNCX.
View Article and Find Full Text PDFAltered calcium homeostasis and increased cytosolic calcium concentrations ([Ca2+]c) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca2+) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC).
View Article and Find Full Text PDF