Publications by authors named "Antonio Migheli"

Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive decline of cognitive function that represents one of the most dramatic medical challenges for the aging population. Aβ peptides, generated by processing of the Amyloid Precursor Protein (APP), are thought to play a central role in the pathogenesis of AD. However, the network of physical and functional interactions that may affect their production and deposition is still poorly understood.

View Article and Find Full Text PDF

The cellular pathways activated by mutant prion protein (PrP) in genetic prion diseases, ultimately leading to neuronal dysfunction and degeneration, are not known. Several mutant PrPs misfold in the early secretory pathway and reside longer in the endoplasmic reticulum (ER) possibly stimulating ER stress-related pathogenic mechanisms. To investigate whether mutant PrP induced maladaptive responses, we checked key elements of the unfolded protein response (UPR) in transgenic mice, primary neurons and transfected cells expressing two different mutant PrPs.

View Article and Find Full Text PDF

A method for the localization of DNA strand breaks at the ultrastructural level is presented. The technique involves the use of terminal deoxynucleotidyl transferase and labeled dUTP. Incorporation of labeled nucleotides is visualized through colloidal gold labeling.

View Article and Find Full Text PDF

The mechanism of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is still unclear and the post-mortem analysis of samples from ALS patients does not permit a clarification of the early events of cell death occurring in ALS. Animal models of motor neuron degeneration represent a reliable tool to investigate the type of cell death. Attention was focused on the possible role of apoptosis in a spontaneous model of cervical spinal cord motor neuron degeneration, the wobbler mouse.

View Article and Find Full Text PDF

Cytoskeletal abnormalities with accumulation of ubiquilated inclusions in the anterior horn cells are a pathological hallmark of both familial and sporadic amyotrophic lateral sclerosis (ALS) and of mouse models for ALS. Phosphorylated neurofilaments besides ubiquitin and dorfin have been identified as one of the major components of the abnormal intracellular perikaryal aggregates. As we recently found that p38 mitogen-activated protein kinase (p38MAPK) colocalized with phosphorylated neurofilaments in spinal motor neurons of SOD1 mutant mice, a model of familial ALS, we investigated whether this kinase also contributed to the inclusions found in ALS patients and SOD1 mutant mice.

View Article and Find Full Text PDF

We have produced a mouse model of a familial prion disorder by introduction of a transgene that encodes the moPrP homolog of a nine-octapeptide insertional mutant associated with an inherited form of CJD in humans. These mice develop progressive neurologic symptoms, display neuropathologic changes, and accumulate a form of mutant PrP in their brains and peripheral tissues that displays some of the biochemical properties of PrPSc. These mice have been extremely valuable for analyzing the cellular and biochemical mechanisms involved in inherited prion disorders and correlating the appearance of the PrPSc-like form with clinical and neuropathologic findings.

View Article and Find Full Text PDF

The identification of mutations in the Tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has made it possible to express human tau protein with pathogenic mutations in transgenic animals. Here we report on the production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation. At 5-6 months of age, homozygous animals from this line developed a neurological phenotype dominated by a severe paraparesis.

View Article and Find Full Text PDF