Overcoming resistance to therapy is a major challenge in castration-resistant prostate cancer (CRPC). Lineage plasticity towards a neuroendocrine phenotype enables CRPC to adapt and survive targeted therapies. However, the molecular mechanisms of epigenetic reprogramming during this process are still poorly understood.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) emerges from chronic inflammation, to which activation of hepatic stellate cells (HSCs) contributes by shaping a pro-tumorigenic microenvironment. Key to this process is p62, whose inactivation leads to enhanced hepatocarcinogenesis. Here, we show that p62 activates the interferon (IFN) cascade by promoting STING ubiquitination by tripartite motif protein 32 (TRIM32) in HSCs.
View Article and Find Full Text PDFFBXO32, a member of the F-box protein family, is known to play both oncogenic and tumor-suppressive roles in different cancers. However, the functions and the molecular mechanisms regulated by FBXO32 in lung adenocarcinoma (LUAD) remain unclear. Here, we report that FBXO32 is overexpressed in LUAD compared with normal lung tissues, and high expression of FBXO32 correlates with poor prognosis in LUAD patients.
View Article and Find Full Text PDFTo maintain both mitochondrial quality and quantity, cells selectively remove damaged or excessive mitochondria through mitophagy, which is a specialised form of autophagy. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation and mitochondrial damage. However, the mechanisms that govern the removal of specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood.
View Article and Find Full Text PDFNon-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.
View Article and Find Full Text PDFPROTACs (PROteolysis TArgeting Chimeras) are bifunctional molecules that target proteins for ubiquitylation by an E3 ligase complex and subsequent degradation by the proteasome. They have emerged as powerful tools to control the levels of specific cellular proteins. We now introduce photoswitchable PROTACs that can be activated with the spatiotemporal precision that light provides.
View Article and Find Full Text PDFProtein prenylation is believed to be catalyzed by three heterodimeric enzymes: FTase, GGTase1 and GGTase2. Here we report the identification of a previously unknown human prenyltransferase complex consisting of an orphan prenyltransferase α-subunit, PTAR1, and the catalytic β-subunit of GGTase2, RabGGTB. This enzyme, which we named GGTase3, geranylgeranylates FBXL2 to allow its localization at cell membranes, where this ubiquitin ligase mediates the polyubiquitylation of membrane-anchored proteins.
View Article and Find Full Text PDFE2F1, E2F2, and E2F3A, the three activators of the E2F family of transcription factors, are key regulators of the G1/S transition, promoting transcription of hundreds of genes critical for cell-cycle progression. We found that during late S and in G2, the degradation of all three activator E2Fs is controlled by cyclin F, the substrate receptor of 1 of 69 human SCF ubiquitin ligase complexes. E2F1, E2F2, and E2F3A interact with the cyclin box of cyclin F via their conserved N-terminal cyclin binding motifs.
View Article and Find Full Text PDFThe BRCA1-BRCA2-RAD51 axis is essential for homologous recombination repair (HRR) and is frequently disrupted in breast cancers. PARP inhibitors (PARPis) are used clinically to treat BRCA-mutated breast tumors. Using a genetic screen, we identified EMI1 as a modulator of PARPi sensitivity in triple-negative breast cancer (TNBC) cells.
View Article and Find Full Text PDFThe separation of germline from somatic lineages is fundamental to reproduction and species preservation. Here, we show that Drosophila Germ cell-less (GCL) is a critical component in this process by acting as a switch that turns off a somatic lineage pathway. GCL, a conserved BTB (Broad-complex, Tramtrack, and Bric-a-brac) protein, is a substrate-specific adaptor for Cullin3-RING ubiquitin ligase complex (CRL3).
View Article and Find Full Text PDFThe protein phosphatase 2A (PP2A) is a conserved heterotrimeric enzyme that regulates several cellular processes including the DNA damage response and mitosis. Consistent with these functions, PP2A is mutated in many types of cancer and acts as a tumor suppressor. In mammalian cells, PP2A inhibition results in DNA double strand breaks (DSBs) and chromosome aberrations (CABs).
View Article and Find Full Text PDFPARP1 is the main sensor of single- and double-strand breaks in DNA and, in building chains of poly(ADP-ribose), promotes the recruitment of many downstream signaling and effector proteins involved in the DNA damage response (DDR). We show a robust physical interaction between PARP1 and the replication fork protein TIMELESS, distinct from the known TIMELESS-TIPIN complex, which activates the intra-S phase checkpoint. TIMELESS recruitment to laser-induced sites of DNA damage is dependent on its binding to PARP1, but not PARP1 activity.
View Article and Find Full Text PDFAn intercentrosomal linker keeps a cell's two centrosomes joined together until it is dissolved at the onset of mitosis. A second connection keeps daughter centrioles engaged to their mothers until they lose their orthogonal arrangement at the end of mitosis. Centriole disengagement is required to license centrioles for duplication.
View Article and Find Full Text PDFPyridoxal 5'-phosphate (PLP), the active form of vitamin B6, has been implicated in preventing human pathologies, such as diabetes and cancer. However, the mechanisms underlying the beneficial effects of PLP are still unclear. Using Drosophila as a model system, we show that PLP deficiency, caused either by mutations in the pyridoxal kinase-coding gene (dPdxk) or by vitamin B6 antagonists, results in chromosome aberrations (CABs).
View Article and Find Full Text PDF