Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. Two approaches have been employed to eliminate heart motion during calcium or voltage mapping in zebrafish larvae: the knockdown of cardiac troponin T2A and the use of myosin inhibitors.
View Article and Find Full Text PDFAim: Bradyarrhythmias result from inhibition of automaticity, prolonged repolarization, or slow conduction in the heart. The ERG channels mediate the repolarizing current I in the cardiac action potential, whereas T-type calcium channels (TTCC) are involved in the sinoatrial pacemaker and atrioventricular conduction in mammals. Zebrafish have become a valuable research model for human cardiac electrophysiology and disease.
View Article and Find Full Text PDFWe introduce how to image calcium ion levels in the heart of zebrafish embryos and larvae up to 5 days post-fertilization with the photoprotein green fluorescent protein (GFP)-aequorin (GA) in the transgenic line Tg(myl7:GA). Incubation of the embryos with CTZ to obtain the functional photoprotein yields few emission counts, suggesting that, when the heart is beating, the rate of aequorin consumption is faster than that of the reconstitution with CTZ. In this chapter, we present an improved aequorin reconstitution protocol.
View Article and Find Full Text PDFmodels of cardiac function maintain the complex relationship of cardiomyocytes with other heart cells, as well as the paracrine and mechanoelectrical feedback mechanisms. We aimed at imaging calcium transients simultaneously with heart contraction in zebrafish larvae. To image calcium in beating hearts, we generated a zebrafish transgenic line expressing the FRET-based ratiometric biosensor Twitch-4.
View Article and Find Full Text PDFZebrafish embryos and larvae have emerged as an excellent model in cardiovascular research and are amenable to live imaging with genetically encoded biosensors to study cardiac cell behaviours, including calcium dynamics. To monitor calcium ion levels in three to five days post-fertilization larvae, we have used bioluminescence. We generated a transgenic line expressing GFP-aequorin in the heart, , and optimized a reconstitution protocol to boost aequorin luminescence.
View Article and Find Full Text PDF