Publications by authors named "Antonio Mario Tamburro"

The innate immune system of insects consists of humoural and cellular responses that provide protection against invading pathogens and parasites. Defence reactions against these latter include encapsulation by immune cells and targeted melanin deposition, which is usually restricted to the surface of the foreign invader, to prevent systemic damage. Here we show that a protein produced by haemocytes of Heliothis virescens (Lepidoptera, Noctuidae) larvae, belonging to XendoU family, generates amyloid fibrils, which accumulate in large cisternae of the rough endoplasmic reticulum and are released upon immune challenge, to form a layer coating non-self objects entering the haemocoel.

View Article and Find Full Text PDF

Tamburro and coworkers have demonstrated that some elastin-derived polypeptide sequences are able to give rise, in vitro, to amyloid-like fibers. The biological relevance of this finding could be explained by the recent detection of some amyloidogenic material found in arteries of old patients affected by atherosclerosis and demonstrated to be elastin derived. In this context, the comprehension of the mechanism responsible for the amyloid-like fibrillogenesis of elastin-derived sequences is of crucial importance for the design of drugs that could inhibit the amyloidogenic process.

View Article and Find Full Text PDF

Aims: The main aim of this study is to better understand the self-aggregation mechanism of amyloid-like elastin-derived fibers in order to design and produce new powerful drugs that will inhibit the onset of 'amyloidosis'.

Materials & Methods: Atomic force microscopy (AFM), Congo Red birefringence assay and Thioflavin T fluorescence measurements were used to demonstrate the amyloid-like behavior of some fragments of elastin protein (exon 30 [EX30] and exon 28 [EX28]). Turbidimetry on apparent absorbance technique was used to investigate the effect either of enhancers or of inhibitors on the amyloidogenic elastin-like peptides.

View Article and Find Full Text PDF

The self-assembly of polypeptides into stable, conductive, and intrinsically fluorescent biomolecular nanowires is reported. We have studied the morphology and electrical conduction of fibrils made of an elastin-related polypeptide, poly(ValGlyGlyLeuGly). These amyloid-like nanofibrils, with a diameter ranging from 20 to 250 nm, result from self-assembly in aqueous solution at neutral pH.

View Article and Find Full Text PDF

Polyalanine cross-linking domains encoded by exons 6, 15, 17, 19, 21, 23, 25, 27, 29, 31 of human tropoelastin were synthesized, and their conformations were studied in different solutions and at different temperatures by CD and (1)H NMR. The results demonstrated the presence of poly-proline II helix (PPII) in aqueous solvent and of alpha-helical conformation in TFE. The (1)H NMR results allowed the precise localization of the helices along the peptide sequence.

View Article and Find Full Text PDF

Elastin is known to self-aggregate in twisted-rope filaments. However, an ultrastructural organization different from the fibrils typical of elastin, but rather similar to those shown by amyloid networks, is shown by the polypeptide sequence encoded by exon 30 of human tropoelastin. To better understand the molecular properties of this sequence to give amyloid fibers, we used CD, NMR, and FTIR (Fourier transform infrared spectroscopy) to identify the structural characteristics of the peptide.

View Article and Find Full Text PDF

In the last years polyproline II (PPII) structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response. The polyproline left-handed helical structure was nearly unknown until now and often confused with unordered, disordered, irregular, unstructured, extended, or random coil conformations because it is neither alpha-helical nor beta-turn nor beta-sheet, i.e.

View Article and Find Full Text PDF