Publications by authors named "Antonio Maia de Jesus Chaves Neto"

The present study provides a comprehensive analysis of the chemical composition of essential oils from species of the genus and their applications. The compiled results highlight the chemical diversity and biological activities of these oils, emphasizing their potential importance for various therapeutic and industrial applications. The findings reveal that essential oils present a variety of bioactive compounds, such as monoterpenes and sesquiterpenes, which demonstrate antimicrobial activities against a range of microorganisms, including Gram-positive and Gram-negative bacteria, as well as yeasts.

View Article and Find Full Text PDF

Context: The Omicron, Kappa, and Delta variants are different strains of the SARS-CoV-2 virus. Graphene oxide quantum dots (GOQDs) represent a burgeoning class of oxygen-enriched, zero-dimensional materials characterized by their sub-20-nm dimensions. Exhibiting pronounced quantum confinement and edge effects, GOQDs manifest exceptional physical-chemical attributes.

View Article and Find Full Text PDF

Coronavirus is caused by the SARS-CoV-2 virus has shown rapid proliferation and scarcity of treatments with proven effectiveness. In this way, we simulated the hospitalization of carbon nanospheres, with external active sites of the SARS-CoV-2 virus (M-Pro, S-Gly and E-Pro), which can be adsorbed or inactivated when interacting with the nanospheres. The computational procedures performed in this work were developed with the SwissDock server for molecular docking and the GROMACS software for molecular dynamics, making it possible to extract relevant data on affinity energy, distance between molecules, free Gibbs energy and mean square deviation of atomic positions, surface area accessible to solvents.

View Article and Find Full Text PDF

Molecular modeling techniques are used to describe the process of interaction between nanotubes and the main structures of the Covid-19 virus: the envelope protein, the main protease, and the Spike glycoprotein. Molecular docking studies show that the ligands have interaction characteristics capable of adsorbing the structures. Molecular dynamics simulations provide information on the mean squared deviation of atomic positions ​​between 0.

View Article and Find Full Text PDF

The combination of computational methods and experimental data from Nuclear Magnetic Resonance (NMR) is a considerably valuable tool in the elucidation of new natural product structures and, also, in the structural revision of previously reported compounds. Until recently, only classical statistical parameters were used, for example, linear correlation coefficient (R ), mean absolute error (MAE), or root mean square deviation (RMSD), as a way to statistically "validate" the structure pointed out by experimental NMR spectra. Regarding the resolution of the relative configuration of organic molecules, novel tools were available in the last few years to assist in the NMR elucidation process.

View Article and Find Full Text PDF

The new coronavirus, SARS-CoV-2, caused the COVID-19 pandemic, characterized by its high rate of contamination, propagation capacity, and lethality rate. In this work, we approach the use of phthalocyanines as an inhibitor of SARS-CoV-2, as they present several interactive properties of the phthalocyanines (Pc) of Cobalt (CoPc), Copper (CuPc) and without a metal group (NoPc) can interact with SARS-CoV-2, showing potential be used as filtering by adsorption on paints on walls, masks, clothes, and air conditioning filters. Molecular modeling techniques through Molecular Docking and Molecular Dynamics were used, where the target was the external structures of the virus, but specifically the envelope protein, main protease, and Spike glycoprotein proteases.

View Article and Find Full Text PDF

The high contamination by the SARS-Cov-2 virus has led to the search for ways to minimize contagion. Masks are used as part of a strategy of measures to suppress transmission and save lives. However, they are not sufficient to provide an adequate level of protection against COVID-19.

View Article and Find Full Text PDF

Hormones are a dangerous group of molecules that can cause harm to humans. This study based on classical molecular dynamics proposes the nanofiltration of wastewater contaminated by hormones from a computer simulation study, in which the water and the hormone were filtered in two single-walled nanotube compositions. The calculations were carried out by changing the intensities of the electric field that acted as a force exerting pressure on the filtration along the nanotube, in the simulation time of 100 ps.

View Article and Find Full Text PDF

For the development of drugs that treat SARS-CoV-2, the fastest way is to find potential molecules from drugs already on the market. Unfortunately, there is currently no specific drug or treatment for COVID-19. Among all structural proteins in SARS-CoV, the spike protein is the main antigenic component responsible for inducing host immune responses, neutralizing antibodies, and/or protecting immunity against virus infection.

View Article and Find Full Text PDF

Herein, we present the results of our study on the thermodynamic properties of the isomers of butanol (n-butanol, 2-butanol, i-butanol, and t-butanol) to evaluate their thermodynamic potential as a complementary biofuel and/or substitute for ethanol and gasoline. The Gaussian09W software was used to perform molecular geometry optimization calculations using density functional theory with the B3lyp hybrid function using the base set 6-311++g(d,p) and the compound methods G3, G4, and CBS-QB3. Calculations of the fundamental frequency of the molecules were performed to obtain the molecular vibration modes for the respective frequencies.

View Article and Find Full Text PDF

The essential oil of was obtained by hydrodistillation. The identification of the chemical compounds was performed by gas chromatography coupled with mass spectrometry (GC/MS). Antimicrobial activity was investigated for four microorganisms: (ATCC 3440), (ATCC 4083), (ATCC 25922), and (ATCC-10231).

View Article and Find Full Text PDF

The essential oils of the fresh and dry flowers, leaves, branches, and roots of Lippia thymoides were obtained by hydrodistillation and analyzed using gas chromatography (GC) and GC-mass spectrometry (MS). The acetylcholinesterase inhibitory activity of the essential oil of fresh leaves was investigated on silica gel plates. The interactions of the key compounds with acetylcholinesterase were simulated by molecular docking and molecular dynamics studies.

View Article and Find Full Text PDF