Hybrid organic-inorganic perovskites (PVKs) are among the most promising materials for optoelectronic applications thanks to their outstanding photophysical properties and easy synthesis. Herein, a new PVK-based thermochromic composite is demonstrated. It can reversibly switch from a transparent state (transmittance > 80%) at room temperature to a colored state (transmittance < 10%) at high temperature, with very fast kinetics, taking only a few seconds to go from the bleached to the colored state (and vice versa).
View Article and Find Full Text PDFBio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte.
View Article and Find Full Text PDFControl of photophysical properties is crucial for the continued development of electroluminescent devices and luminescent materials. Preparation and study of original molecules uncovers design rules towards efficient materials and devices. Here we have prepared 7 new compounds based on the popular donor-acceptor design used in thermally activated delayed fluorescence emitters.
View Article and Find Full Text PDFThe photophysical and electrochemical properties of a new class of fluorinated benzonitrile compounds substituted with mixed phenoxazine and carbazole units have been investigated. When absorbing in a large range of the UV-vis spectrum due to both localized and charge-transfer absorptions, these compounds show dual broad emission in solution and intense emission in PMMA films, with photoluminescence quantum yields changing from a few percent in solution to 18% in a more rigid environment. The compounds also exhibit thermally activated delayed fluorescence demonstrated by the role of oxygen in the quenching of delayed fluorescence and by time-resolved luminescence studies, with an efficiency directly related to the number of phenoxazine substituents.
View Article and Find Full Text PDFIn this work, we investigate the optical and structural properties of the well-known triplet emitter bis(4',6'-difluorophenylpyridinato)-iridium(III) picolinate (FIrpic), showing that its ability to pack in two different ordered crystal structures promotes attractive photophysical properties that are useful for solid-state lighting applications. This approach allows the detrimental effects of the nonradiative pathways on the luminescence performance in highly concentrated organic active materials to be weakened. The remarkable electro-optical behavior of sky-blue phosphorescent organic light-emitting diodes incorporating crystal domains of FIrpic, dispersed into an appropriate matrix as an active layer, has also been reported as well as the X-ray diffraction, nuclear magnetic resonance, electro-ionization mass spectrometry, and scanning electron microscopy analyses of the crystalline samples.
View Article and Find Full Text PDFThe irreversible reaction of methyl triflate with neutral Re(I) tetrazolato complexes of the type fac-[Re(diim)(CO)3(L)], where diim is either 1,10-phenanthroline or 2,2'-bipyridine and L is a para substituted 5-aryltetrazolate, yielded the corresponding cationic methylated complexes. While methylation occurred regioselectively at the N4 position of the tetrazole ring, the cationic complexes were found to exist in solution as equilibrating mixtures of linkage isomers, where the Re(i) centre was bound to either the N1 or N2 atom of the tetrazole ring. The existence of these isomers was highlighted both by NMR and X-ray crystallography studies.
View Article and Find Full Text PDF