Publications by authors named "Antonio M G de Diego"

From a pathogenic perspective, Huntington's disease (HD) is being considered as a synaptopathy. As such, alterations in brain neurotransmitter release occur. As the activity of the sympathoadrenal axis is centrally controlled, deficits in the exocytotic release of catecholamine release may also occur.

View Article and Find Full Text PDF

This review focuses on retina degeneration occurring during glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), and on the potential therapeutic use of triads of repositioned medicines, addressed to distinct but complementary targets, to prevent, delay or stop retina cell death. Although myriad pathogenic mechanisms have been implicated in these disorders, common signaling pathways leading to apoptotic cell death to all of them, and to all neurodegenerative diseases are (i) calcium dyshomeostasis/excitotoxicity; (ii) oxidative stress/mitochondrial dysfunction, and (iii) neuroinflammation/P2X7 receptor activation. From a therapeutic point of view, it is relevant to consider the multitarget approach based on the use of combined medicines acting on complementary pathogenic mechanisms that has been highly successful in the treatment of chronic diseases such as cancer, AIDS, pain, hypertension, Parkinson's disease, cardiac failure, depression, or the epilepsies as the basic mechanisms of cell death do not differ between the different CNS degenerative diseases.

View Article and Find Full Text PDF

The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists.

View Article and Find Full Text PDF

Pre-blockade of the sarco-endoplasmic reticulum (ER) calcium ATPase (SERCA) with irreversible thapsigargin depresses exocytosis in adrenal bovine chromaffin cells (BCCs). Distinct expression of voltage-dependent Ca-channel subtypes and of the Ca-induced Ca release (CICR) mechanism in BCCs versus mouse chromaffin cells (MCCs) has been described. We present a parallel study on the effects of the acute SERCA blockade with reversible cyclopizonic acid (CPA), to repeated pulsing with acetylcholine (ACh) at short (15 s) and long intervals (60 s) at 37 °C, allowing the monitoring of the initial size of a ready-release vesicle pool (RRP) and its depletion and recovery in subsequent stimuli.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs.

View Article and Find Full Text PDF

Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other.

View Article and Find Full Text PDF

Synaptic disruption and altered neurotransmitter release occurs in the brains of patients and in murine models of neurodegenerative diseases (NDDs). During the last few years, evidence has accumulated suggesting that the sympathoadrenal axis is also affected as disease progresses. Here, we review a few studies done in adrenal medullary chromaffin cells (CCs), that are considered as the amplifying arm of the sympathetic nervous system; the sudden fast exocytotic release of their catecholamines-stored in noradrenergic and adrenergic cells-plays a fundamental role in the stress fight-or-flight response.

View Article and Find Full Text PDF

In the frame of a repositioning programme with cholinergic medicines in clinical use searching for neuroprotective properties, we surprisingly found that spasmolytic antimuscarinics otilonium and pinaverium exhibited neurotoxic effects in neuronal cultures. We decided to characterize such unexpected action in primary cultures of rat embryo cortical neurons. Neurotoxicity was time- and concentration-dependent, exhibiting approximate EC values of 5 μM for both drugs.

View Article and Find Full Text PDF

As the peripheral sympathoadrenal axis is tightly controlled by the cortex via hypothalamus and brain stem, the central pathological features of Hunting's disease, (HD) that is, deposition of mutated huntingtin and synaptic dysfunctions, could also be expressed in adrenal chromaffin cells. To test this hypothesis we here present a thorough investigation on the pathological and functional changes undergone by chromaffin cells (CCs) from 2-month (2 m) to 7-month (7 m) aged wild-type (WT) and R6/1 mouse model of Huntington's disease (HD), stimulated with acetylcholine (ACh) or high [K ] (K ). In order to do this, we used different techniques such as inmunohistochemistry, patch-clamp, and amperometric recording.

View Article and Find Full Text PDF

Gasotransmitter hydrogen sulphide (HS) has emerged as a regulator of multiple physiological and pathophysiological processes throughout. Here, we have investigated the effects of NaHS (fast donor of HS) and GYY4137 (GYY, slow donor of HS) on the exocytotic release of catecholamines from fast-perifused bovine adrenal chromaffin cells (BCCs) challenged with sequential intermittent pulses of a K-depolarizing solution. Both donors caused a concentration-dependent facilitation of secretion.

View Article and Find Full Text PDF

Here we review the contribution of the various subtypes of voltage-activated calcium channels (VACCs) to the regulation of catecholamine release from chromaffin cells (CCs) at early life. Patch-clamp recording of inward currents through VACCs has revealed the expression of high-threshold VACCs (high-VACCs) of the L, N, and PQ subtypes in rat embryo CCs and ovine embryo CCs. Low-threshold VACC (low-VACC) currents (T-type) have also been recorded in rat embryo CCs and rat neonatal slices of adrenal medullae.

View Article and Find Full Text PDF

Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established.

View Article and Find Full Text PDF

At early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D, Cav1.

View Article and Find Full Text PDF

Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage- and current-clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a whole-cell Na(+)-dependent inward current (ICS) that produced drastic cell depolarization, and a cytosolic calcium transient ([Ca(2+)]c).

View Article and Find Full Text PDF

The kinetics of single-amperometric exocytotic events has been measured in chromaffin cells of C57 mice and in an APP/PS1 mouse model of Alzheimer's disease (AD). K(+) depolarisation causes a burst of spikes that indicate the quantal release of the single-vesicle content of catecholamine. The kinetic analysis of 278 spikes from 10 control cells and 520 spikes from 18 APP/PS1 cells shows the following features of the latter compared with the former: (i) 45% lower t(1/2); (ii) 60% smaller quantal size; (iii) 50% lower decay time.

View Article and Find Full Text PDF

The cardiovascular protecting effect of the grape fruit trans-resveratrol has been explained among other factors, through augmentation of nitric oxide (NO) production in cardiovascular tissues. Another effect of low resveratrol concentration is the inhibition of single-vesicle quantal release of catecholamine from bovine adrenal chromaffin cells, that was recently suggested to be an additional factor contributing to its beneficial cardiovascular effects. We have investigated here the effects of a low concentration of trans-resveratrol (1 μM) on Ca(2+) and NO signaling pathways in bovine chromaffin cells, in an attempt to understand the mechanism underlying its previously reported inhibitory effects on quantal secretion.

View Article and Find Full Text PDF

Chromaffin cells are an excellent model for stimulus-secretion coupling. Ca(2+) entry through plasma membrane voltage-operated Ca(2+) channels (VOCC) is the trigger for secretion, but the intracellular organelles contribute subtle nuances to the Ca(2+) signal. The endoplasmic reticulum amplifies the cytosolic Ca(2+) ([Ca(2+)](C)) signal by Ca(2+)-induced Ca(2+) release (CICR) and helps generation of microdomains with high [Ca(2+)](C) (HCMD) at the subplasmalemmal region.

View Article and Find Full Text PDF

Compound ITH33/IQM9.21 (ITH/IQM) belongs to a new family of l-glutamic acid derivatives with antioxidant and neuroprotective properties on in vitro and in vivo models of stroke. Because neuronal damage after brain ischemia is tightly linked to excess Ca2+ entry and neuronal Ca2+ overload, we have investigated whether compound ITH/IQM antagonises the elevations of the cytosolic Ca2+ concentrations ([Ca2+]c) and the ensuing exocytotic responses triggered by depolarisation of bovine chromaffin cells.

View Article and Find Full Text PDF

The cardiovascular protecting effects of resveratrol, an antioxidant polyphenol present in grapes and wine, have been attributed to its vasorelaxing effects and to its anti-inflammatory, antioxidant, and antiplatelet actions. Inhibition of adrenal catecholamine release has also been recently implicated in its cardioprotecting effects. Here, we have studied the effects of nanomolar concentrations of resveratrol on quantal single-vesicle catecholamine release in isolated bovine adrenal chromaffin cells.

View Article and Find Full Text PDF

The ability of adrenal chromaffin cells to fast-release catecholamines relies on their capacity to fire action potentials (APs). However, little attention has been paid to the requirements needed to evoke the controlled firing of APs. Few data are available in rodents and none on the bovine chromaffin cell, a model extensively used by researchers.

View Article and Find Full Text PDF

Mitochondrial calcium (Ca(2+)) dyshomeostasis constitutes a critical step in the metabolic crossroads leading to cell death. Therefore, we have studied here whether 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157; CGP), a blocker of the mitochondrial Na(+)/Ca(2+)-exchanger (mNCX), protects against veratridine-elicited chromaffin cell death, a model suitable to study cell death associated with Ca(2+) overload. Veratridine produced a concentration-dependent cell death, measured as lactate dehydrogenase released into the medium after a 24-h incubation period.

View Article and Find Full Text PDF

Studies on the bulk catecholamine release from fetal and neonatal rat adrenals, adrenal slices, or isolated chromaffin cells stimulated with high K(+), hypoxia, hypercapnia, or acidosis are available. However, a study analyzing the kinetics of quantal secretion is lacking. We report here such a study in which we compare the quantal release of catecholamines from immature rat embryo chromaffin cells (ECCs) and their mothers' (MCCs).

View Article and Find Full Text PDF

Tobacco smokers have an increased risk of cardiovascular disease; this is likely associated to an enhanced catecholamine release by circulating nicotine. Here, we have explored how low concentrations of nicotine in the range of those found in the blood of tobacco smokers, might affect the release of catecholamines in bovine chromaffin cells. We have combined patch-clamp and Ca(2+) imaging techniques to study cell excitability, cytosolic Ca(2+) transients, vesicle movement, and secretory responses.

View Article and Find Full Text PDF

Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca2+]c) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca2+) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC).

View Article and Find Full Text PDF

The view that Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCC) and through nicotinic receptors for acetylcholine (nAChRs) causes equal catecholamine release responses in chromaffin cells, was reinvestigated here using new protocols. We have made two-step experiments consisting in an ACh prepulse followed by a depolarizing pulse (DP). In voltage-clamped bovine chromaffin cells an ACh prepulse caused a slow-rate release but augmented 4.

View Article and Find Full Text PDF