Publications by authors named "Antonio Leonardi"

The dysregulated NF-κB basal activity is a common feature of human thyroid carcinomas, especially in poorly differentiated or undifferentiated forms that, even if rare, are often resistant to standard therapies, and, therefore, are uncurable. Despite the molecular mechanisms leading to NF-κB activation in thyroid cancer being only partially understood, during the last few years, it has become clear that NF-κB contributes in different ways to the oncogenic potential of thyroid neoplastic cells. Indeed, it enhances their proliferation and viability, promotes their migration to and colonization of distant organs, and fuels their microenvironment.

View Article and Find Full Text PDF

Background: the Coronavirus disease 2019 (COVID-19) pandemic may have aggravated existing social and healthcare inequalities among particular population groups, such as ethnic minorities, who showed increased susceptibility to SARS-CoV-2 infection.

Objectives: to characterize risk profiles or determinants of delayed healthcare access, as well as knowledge, risk perception, behaviour, and social stigma concerning SARS-CoV-2 infection in the immigrant population in the city of Catania (Sicily Region, Southern Italy).

Design: pilot, descriptive study.

View Article and Find Full Text PDF

Introduction: We explored in mice, the analgesic, tolerance, dependency, and rewarding effects of systemic acetaminophen (APAP).

Methods: Studies employed adult mice (C57Bl6). (1) .

View Article and Find Full Text PDF

Therapy-induced senescence (TIS) represents a major cellular response to anticancer treatments. Both malignant and non-malignant cells in the tumor microenvironment undergo TIS and may be harmful for cancer patients since TIS cells develop a senescence-associated secretory phenotype (SASP) that can sustain tumor growth. The SASP also modulates anti-tumor immunity, although the immune populations involved and the final results appear to be context-dependent.

View Article and Find Full Text PDF

In the era of immunotherapy, the targeting of disease-specific biomarkers goes hand in hand with the development of highly selective antibody-based reagents having optimal pharmacological/toxicological profiles. One interesting and debated biomaker for several types of cancers is the onco-fetal protein Cripto-1 that is selectively expressed in many solid tumours and has been actively investigated as potential theranostic target. Starting from previously described anti-CFC/Cripto-1 murine monoclonal antibodies, we have moved forward to prepare the humanized recombinant Fabs which have been engineered so as to bear an MTGase site useful for a one-step site-specific labelling.

View Article and Find Full Text PDF

Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression.

View Article and Find Full Text PDF

The search for improved transducers to fabricate better-performing (bio)sensors is a challenging but rewarding endeavor aiming to better diagnose and treat diseases. In this paper, we report on the decoration of a dense vertical array of ultrathin silicon nanowires (Si NWs), produced by metal-assisted chemical etching, with 20 nm gold nanoparticles (Au NPs) for surface-enhanced Raman scattering (SERS) applications. To optimize the production of a uniform 3D SERS active platform, we tested different Si NW surface functionalizations with various alkoxysilanes before Au decoration.

View Article and Find Full Text PDF

Glycoside hydrolases (GHs) have been employed for industrial and biotechnological purposes and often play an important role in new applications. The red blood cell (RBC) antigen system depends on the composition of oligosaccharides on the surface of erythrocytes, thus defining the ABO blood type classification. Incorrect blood transfusions may lead to fatal consequences, making the availability of the correct blood group critical.

View Article and Find Full Text PDF

Drug development in recent years is increasingly focused on developing personalized treatments based on blocking molecules selective for therapeutic targets specifically present in individual patients. In this perspective, the specificity of therapeutic targets and blocking agents plays a crucial role. Monoclonal antibodies (mAbs) and their surrogates are increasingly used in this context thanks to their ability to bind therapeutic targets and to inhibit their activity or to transport bioactive molecules into the compartments in which the targets are expressed.

View Article and Find Full Text PDF

Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment.

View Article and Find Full Text PDF

The pandemic outbreak caused by SARS-CoV-2 coronavirus brought a crucial issue in public health causing up to now more than 600 million infected people and 6.5 million deaths. Conventional diagnostic methods are based on quantitative reverse transcription polymerase chain reaction (RT-qPCR assay) and immuno-detection (ELISA assay).

View Article and Find Full Text PDF

Prosthetic joint replacement is the most widely used surgical approach to repair large bone defects, although it is often associated with prosthetic joint infection (PJI), caused by biofilm formation. To solve the PJI problem, various approaches have been proposed, including the coating of implantable devices with nanomaterials that exhibit antibacterial activity. Among these, silver nanoparticles (AgNPs) are the most used for biomedical applications, even though their use has been limited by their cytotoxicity.

View Article and Find Full Text PDF

In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production.

View Article and Find Full Text PDF

The recent SARS-CoV-2 pandemic has highlighted the urgent need for novel point-of-care devices to be promptly used for a rapid and reliable large screening analysis of several biomarkers like genetic sequences and antibodies. Currently, one of the main limitations of rapid tests is the high percentage of false negatives in the presence of variants and, in particular for the Omicron one. We demonstrate in this work the detection of SARS-CoV-2 and the Omicron variant with a cost-effective silicon nanosensor enabling high sensitivity, selectivity, and fast response.

View Article and Find Full Text PDF

In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death.

View Article and Find Full Text PDF

Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand.

View Article and Find Full Text PDF

In this paper, we exploit the perspective of luminescent Si nanowires (NWs) in the growing field of commercial biosensing nanodevices for the selective recognition of proteins and pathogen genomes. We fabricated quantum confined fractal arrays of Si NWs with room temperature emission at 700 nm obtained by thin-film, metal-assisted, chemical etching with high production output at low cost. The fascinating optical features arising from multiple scattering and weak localization of light promote the use of Si NWs as optical biosensing platforms with high sensitivity and selectivity.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) has attracted great attention for its unique chemical and physical properties. The applications of this transition metal dichalcogenide (TMDC) range from supercapacitors to dye-sensitized solar cells, Li-ion batteries and catalysis. This work opens new routes toward the use of electrodeposition as an easy, scalable and cost-effective technique to perform the coupling of Si with molybdenum disulfide.

View Article and Find Full Text PDF

Silicon nanowires (NWs) are appealing building blocks for low-cost novel concept devices with improved performances. In this research paper, we realized a hybrid platform combining an array of vertically oriented Si NWs with different types of bucky gels, obtained from carbon nanotubes (CNT) dispersed into an ionic liquid (IL) matrix. Three types of CNT bucky gels were obtained from imidazolium-based ionic liquids (BMIM-I, BIMI-BF, and BMIM-TfN) and semiconductive CNTs, whose structural and optical responses to the hybrid platforms were analyzed and compared.

View Article and Find Full Text PDF

The continuing accumulation of mutations in the RNA genome of the SARS-CoV-2 virus generates an endless succession of highly contagious variants that cause concern around the world due to their antibody resistance and the failure of current diagnostic techniques to detect them in a timely manner. Raman spectroscopy represents a promising alternative to variants detection and recognition techniques, thanks to its ability to provide a characteristic spectral fingerprint of the biological samples examined under all circumstances. In this work we exploit the surface-enhanced Raman scattering (SERS) properties of a silver dendrite layer to explore, for the first time to our knowledge, the distinctive features of the Omicron variant genome.

View Article and Find Full Text PDF

Conventional and targeted cancer therapies may induce a cellular senescence program termed therapy-induced senescence. However, unlike normal cells, cancer cells are able to evade the senescence cell cycle arrest and to resume proliferation, driving tumor recurrence after treatments. Cells that escape from therapy-induced senescence are characterized by a plastic, cancer stem cell-like phenotype, and recent studies are beginning to define their unique metabolic features, such as glutamine dependence.

View Article and Find Full Text PDF

In this work, the optimal conditions for the electrodeposition of a CdSe film on n-Si were demonstrated. The structural and optical properties of the bare films and after annealing were studied. In particular, the crystallinity and photoluminescence of the samples were evaluated, and after annealing at 400 °C under a nitrogen atmosphere, a PL increase by almost an order of magnitude was observed.

View Article and Find Full Text PDF

Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer.

View Article and Find Full Text PDF

The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas.

View Article and Find Full Text PDF

The analysis of viral nucleic acids (NA), DNA or RNA, is a crucial issue in the diagnosis of infections and the treatment and prevention of related human diseases. Conventional nucleic acid tests (NATs) require multistep approaches starting from the purification of the pathogen genetic material in biological samples to the end of its detection, basically performed by the consolidated polymerase chain reaction (PCR), by the use of specialized instruments and dedicated laboratories. However, since the current NATs are too constraining and time and cost consuming, the research is evolving towards more integrated, decentralized, user-friendly, and low-cost methods.

View Article and Find Full Text PDF