Publications by authors named "Antonio Lauto"

Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials.

View Article and Find Full Text PDF

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) remains the most investigated conjugated polymer in bioelectronics, due to its biocompatibility, high conductivity, and commercial availability. Despite these advantages, it suffers from structural and electronic instability, associated with the PSS component. Here, a graft copolymer based on ionised sulfonic modified PEDOT, poly(EDOTS--EDOT), was electrochemically synthesised with demonstrated structural and electronic stability and enhanced electrochemical performance.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conductors (OMIECs) are being explored in applications such as bioelectronics, biosensors, energy conversion and storage, and optoelectronics. OMIECs are largely composed of conjugated polymers that couple ionic and electronic transport in their structure as well as synthetic flexibility. Despite extensive research, previous studies have mainly focused on either enhancing ion conduction or enabling synthetic modification.

View Article and Find Full Text PDF

Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic therapy (PDT) is an alternative treatment that can effectively target triple-negative neoplastic cells such as MDA-MB-231.

View Article and Find Full Text PDF

Nerve stimulation is a rapidly developing field, demonstrating positive outcomes across several conditions. Despite potential benefits, current nerve stimulation devices are large, complicated, and are powered via implanted pulse generators. These factors necessitate invasive surgical implantation and limit potential applications.

View Article and Find Full Text PDF

Biomedical investigations in nanotherapeutics and nanomedicine have recently intensified in pursuit of new therapies with improved efficacy. Quantum dots (QDs) are promising nanomaterials that possess a wide array of advantageous properties, including electronic properties, optical properties, and engineered biocompatibility under physiological conditions. Due to these characteristics, QDs are mainly used for biomedical labeling and theranostic (therapeutic-diagnostic) agents.

View Article and Find Full Text PDF
Article Synopsis
  • Electric-field stimulation can enhance nerve regeneration but existing methods often involve invasive circuitry that may harm surrounding tissues.
  • A new technique utilizes a graft-antenna—an external metal ring around the damaged nerve—powered by magnetic stimulation, eliminating the need for electrodes or internal components.
  • Research includes a computational model and in-vivo studies on rats, demonstrating that sufficient magnetic stimulation can activate nerves via the graft-antenna, although a gap between the antenna and nerve may decrease activation effectiveness.
View Article and Find Full Text PDF

Conjugated polymers are enabling the development of flexible bioelectronics, largely driven by their organic nature which facilitates modification and tuning to suit a variety of applications. As organic semiconductors, conjugated polymers require a dopant to exhibit electrical conductivity, which in physiological conditions can result in dopant loss and thereby deterioration in electronic properties. To overcome this challenge, "self-doped" and self-acid-doped conjugated polymers having ionized pendant groups covalently bound to their backbone are being developed.

View Article and Find Full Text PDF

Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in vitro. However, the hydrophilic RB struggles to efficiently penetrate the tumour site due to the unique clinical microenvironment, aggregating around rather than entering cancer cells.

View Article and Find Full Text PDF

Rose bengal (RB) solutions coupled with a green laser have proven to be efficient in clearing resilient nail infections caused by Trichophyton rubrum in a human pilot study and in extensive in vitro experiments. Nonetheless, the RB solution can become diluted or dispersed over the tissue and prevented from penetrating the nail plate to reach the subungual area where fungal infection proliferates. Nanoparticles carrying RB can mitigate the problem of dilution and are reported to effectively penetrate through the nail.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements.

View Article and Find Full Text PDF

Background And Objectives: Biocompatible nanoparticles have been increasingly used in a variety of medical applications, including photodynamic therapy. Although the impact of synthesis parameters and purification methods is reported in previous studies, it is still challenging to produce a reliable protocol for the fabrication, purification, and characterization of nanoparticles in the 200-300 nm range that are highly monodisperse for biomedical applications.

Study Design/materials And Methods: We investigated the synthesis of chitosan nanoparticles in the 200-300 nm range by evaluating the chitosan to sodium tripolyphosphate (TPP) mass ratio and acetic acid concentration of the chitosan solution.

View Article and Find Full Text PDF

Hereditary sensory neuropathy type 1A (HSN1A) is an autosomal, dominantly inherited peripheral neuropathy caused by mutations in serine palmitoyl transferase long chain 1 (SPTLC1), involved in the synthesis of sphingolipids. We have previously reported calcium imbalance, as well as mitochondrial and ER stress in both HSN1 patient lymphoblasts and a transiently transfected cell model. In this study, we investigated the role of the Ca-activated protease calpain in destabilizing the cell cytoskeleton, by examining calpain activity in SH-SY5Y cells overexpressing the V144D mutant and changes in microtubule-associated proteins (MAP).

View Article and Find Full Text PDF

Infections caused by drug-resistant pathogens are rapidly increasing in incidence and pose an urgent global health concern. New treatments are needed to address this critical situation while preventing further resistance acquired by the pathogens. One promising approach is antimicrobial photodynamic therapy (PDT), a technique that selectively damages pathogenic cells through reactive oxygen species (ROS) that have been deliberately produced by light-activated chemical reactions via a photosensitiser.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) with Rose Bengal has previously achieved eradication of Trichophyton rubrum infections causing toenail onychomycosis; however, its antifungal activity against other clinically relevant dermatophytes has yet to be studied. Here, we test the efficacy of PDT using Rose Bengal (140 μM) and 532 nm irradiation (101 J/cm ) against Trichophyton mentagrophytes and Trichophyton interdigitale spores, in comparison to T. rubrum.

View Article and Find Full Text PDF

Interaction of conjugated polymers with liposomes is an attractive approach that benefits from both systems' characteristics such as electroactivity and enhanced interaction with cells. Conjugated polymer-liposome complexes have been investigated for bioimaging, drug delivery, and photothermal therapy. Their fabrication has largely been achieved by multistep procedures that require first the synthesis and processing of the conjugated polymer.

View Article and Find Full Text PDF

L-3,4-dihydroxyphenylalanine (L-DOPA) is a naturally occurring catechol that is known to increase the adhesive strength of various materials used for tissue repair. With the aim of fortifying a porous and erodible chitosan-based adhesive film, L-DOPA was incorporated in its fabrication for stronger photochemical tissue bonding (PTB), a repair technique that uses light and a photosensitiser to promote tissue adhesion. The results showed that L-DOPA did indeed increase the tissue bonding strength of the films when photoactivated by a green LED, with a maximum strength recorded of approximately 30 kPa, 1.

View Article and Find Full Text PDF

Organic semiconductors remain of major interest in the field of bioelectrochemistry for their versatility in chemical and electrochemical behavior. These materials have been tailored using organic synthesis for use in cell stimulation, sustainable energy production, and in biosensors. Recent progress in the field of fully organic semiconductor biosensors is outlined in this review, with a particular emphasis on the synthetic tailoring of these semiconductors for their intended application.

View Article and Find Full Text PDF

Photochemical tissue bonding with chitosan-based adhesive films is an experimental surgical technique that avoids the risk of thermal tissue injuries and the use of sutures to maintain strong tissue connection. This technique is advantageous over other tissue repair methods as it is minimally invasive and does not require mixing of multiple components before or during application. To expand the capability of the film to beyond just a tissue bonding device and promote tissue regeneration, in this study, we designed bioadhesive films that could also support stem cells.

View Article and Find Full Text PDF

An original wireless stimulator for peripheral nerves based on a metal loop (diameter ≈1 mm) that is powered by a transcranial magnetic stimulator (TMS) and does not require circuitry components is reported. The loop can be integrated in a chitosan scaffold that functions as a graft when applied onto transected nerves (graft-antenna). The graft-antenna is bonded to rat sciatic nerves by a laser without sutures; it does not migrate after implantation and is able to trigger steady compound muscle action potentials for 12 weeks (CMAP ≈1.

View Article and Find Full Text PDF

Bioelectronic materials based on conjugated polymers are being developed in the hope to interface with electroresponsive tissues. We have recently demonstrated that a polyaniline chitosan patch can efficiently electro-couple with cardiac tissue modulating its electrophysiology. As a promising bioelectronic material that can be tailored to different types of devices, we investigate here the impact of varying the synthesis conditions and time of the in situ polymerization of aniline (An) on the sheet resistance of the bioelectronic patch.

View Article and Find Full Text PDF

Background: Extracellular matrices (ECMs) are often used in reconstructive surgery to enhance tissue regeneration and remodeling. Sutures and staples are currently used to fix ECMs to tissue although they can be invasive devices. Other sutureless and less invasive techniques, such as photochemical tissue bonding, cannot be coupled to ECMs because of their intrinsic opacity to light.

View Article and Find Full Text PDF

Nail fungal infections are notoriously persistent and difficult to treat which can lead to severe health impacts, particularly in the immunocompromized. Current antifungal treatments, including systemic and topical drugs, are prolonged and do not effectively provide a complete cure. Severe side effects are also associated with systemic antifungals, such as hepatotoxicity.

View Article and Find Full Text PDF

Functionalized poly(ethylene dioxythiophene) (f-PEDOT) was copolymerized with two vinyl monomers of different hydrophilicity, acrylic acid and hydroxyethyl methacrylate, to produce electroconductive hydrogels with a range of physical and electronic properties. These hydrogels not only possessed tailored physical properties, such as swelling ratios and mechanical properties, but also displayed electroactivity dependent on the chemical composition of the network. Raman spectroscopy indicated that the functional PEDOT in the hydrogels is in an oxidized form, most likely accounting for the good electrochemical response of the hydrogels observed in physiological buffer.

View Article and Find Full Text PDF

Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2kdablmb45km4salos0oj6mbqshpjilr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once