Publications by authors named "Antonio Laezza"

Electrospun (e-spun) fibers are generally regarded as powerful tools for cell growth in tissue regeneration applications, and the possibility of imparting functional properties to these materials represents an increasingly pursued goal. We report herein the preparation of hybrid materials in which an e-spun d,l-polylactic acid matrix, to which chitosan or crystalline nanocellulose was added to improve hydrophilicity, was loaded with different amounts of silver(0) nanoparticles (AgNP) generated onto chestnut shell lignin (CSL) (AgNP@CSL). A solvent-free mechanochemical method was used for efficient (85% of the theoretical value by XRD analysis) Ag(0) production from the reduction of AgNO by lignin.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues.

View Article and Find Full Text PDF

Thiol-Michael addition is a chemical reaction extensively used for conjugating peptides to polysaccharides with applications as biomaterials. In the present study, for designing a bioactive element in electrospun scaffolds as wound dressing material, a chemical strategy for the semi-synthesis of a hyaluronan-elastin conjugate containing an amide linker (ELAHA) was developed in the presence of tris(2-carboxyethyl)phosphine hydrochloride (TCEP ⋅ HCl). The bioconjugate was electrospun with poly-D,L-lactide (PDLLA), obtaining scaffolds with appealing characteristics in terms of morphology and cell viability of dermal fibroblast cells.

View Article and Find Full Text PDF

Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM.

View Article and Find Full Text PDF

Sulfated alginates (ASs), as well as several artificially sulfated polysaccharides, show interesting bioactivities. The key factors for structure-activity relationships studies are the degree of sulfation and the distribution of the sulfate groups along the polysaccharide backbone (sulfation pattern). The former parameter can often be controlled through stoichiometry, while the latter requires the development of suitable chemical or enzymatic, regioselective methods and is still missing for ASs.

View Article and Find Full Text PDF

This work concerns the study of electrospun scaffolds as separators for aprotic lithium-ion batteries (LIBs) composed of the amorphous poly-d,l-lactide (PDLLA), in solution concentrations of 8, 10, and 12 wt % and in different ratios with cellulose nanocrystals (CNCs). PDLLA has been studied for the first time as a separator, taking into account its amorphous character that could facilitate electrolyte incorporation into the polymer matrix and influence ionic conductivity, together with CNCs, for reducing the hydrophobicity of the scaffolds. The embedding of the nanocrystals in the scaffolds was confirmed by X-ray diffraction analysis and attenuated total reflectance Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Peptide-based hydrogels are of great interest in the biomedical field according to their biocompatibility, simple structure and tunable properties via sequence modification. In recent years, multicomponent assembly of peptides have expanded the possibilities to produce more versatile hydrogels, by blending gelating peptides with different type of peptides to add new features. In the present study, the assembly of gelating P5 peptide SFFSF blended with P21 peptide, SFFSFGVPGVGVPGVGSFFSF, an elastin-inspired peptides or, alternatively, with FF dipeptide, was investigated by oscillatory rheology and different microscopy techniques in order to shed light on the nanotopologies formed by the self-assembled peptide mixtures.

View Article and Find Full Text PDF

Hyaluronic acid or hyaluronan (HA) and elastin-inspired peptides (EL) have been widely recognized as bioinspired materials useful in biomedical applications. The aim of the present work is the production of electrospun scaffolds as wound dressing materials which would benefit from synergic action of the bioactivity of elastin peptides and the regenerative properties of hyaluronic acid. Taking advantage of thiol-ene chemistry, a bioactive elastin peptide was successfully conjugated to methacrylated hyaluronic acid (MAHA) and electrospun together with poly-D,L-lactide (PDLLA).

View Article and Find Full Text PDF

Elastin is an extracellular matrix component with key structural and biological roles in elastic tissues. Interactions between resident cells and tropoelastin, the monomer of elastin, underpin elastin's regulation of cellular processes. However, the nature of tropoelastin-cell interactions and the contributions of individual tropoelastin domains to these interactions are only partly elucidated.

View Article and Find Full Text PDF

Glycomaterials display enhanced binding affinity to carbohydrate-binding proteins due to the nonlinear enhancement associated with the cluster glycoside effect. Gold nanoparticles bearing glycans have attracted significant interest in particular. This is due to their versatility, their highly tunable gold cores (size and shape), and their application in biosensors and diagnostic tools.

View Article and Find Full Text PDF

Fucosylated chondroitin sulfate (fCS) is a glycosaminoglycan (GAG) polysaccharide with a unique structure, displaying a backbone composed of alternating -acetyl-d-galactosamine (GalNAc) and d-glucuronic acid (GlcA) units on which l-fucose (Fuc) branches are installed. fCS shows several potential biomedical applications, with the anticoagulant activity standing as the most promising and widely investigated one. Natural fCS polysaccharides extracted from marine organisms (, ) present some advantages over a largely employed antithrombotic drug such as heparin, but some adverse effects as well as a frequently found structural heterogeneity hamper its development as a new drug.

View Article and Find Full Text PDF

Glycan-lectin interactions drive a diverse range of biological signaling and recognition processes. The display of glycans in multivalent format enables their intrinsically weak binding affinity to lectins to be overcome by the cluster glycoside effect, which results in a non-linear increase in binding affinity. As many lectins have multiple binding sites, upon interaction with glycosylated nanomaterials either aggregation or surface binding without aggregation can occur.

View Article and Find Full Text PDF

Fucosylated chondroitin sulfate (fCS) is a glycosaminoglycan found up to now exclusively in the body wall of sea cucumbers. It shows several interesting activities, with the anticoagulant and antithrombotic as the most attractive ones. Its different mechanism of action on the blood coagulation cascade with respect to heparin and the retention of its activity by oral administration make fCS a very promising anticoagulant drug candidate for heparin replacement.

View Article and Find Full Text PDF

Sulfated polysaccharides are known to possess several biological activities, with their sulfation pattern acting as a code able to transmit functional information. Due to their high biological and biomedical importance, in the last two decades many reports on the chemical modification of their sulfate distribution as well as on the regioselective insertion of sulfate groups on non-sulfated polysaccharides appeared in literature. In this Review we have for the first time collected these reports together, categorizing them into three different classes: i) regioselective sulfation reactions, ii) regioselective desulfation reactions, iii) regioselective insertion of sulfate groups through multi-step strategies, and discussing their scope and limitations.

View Article and Find Full Text PDF

Several threonine (Thr)- and alanine (Ala)-rich antifreeze glycoproteins (AFGPs) and polysaccharides act in nature as ice recrystallization inhibitors. Among them, the Thr-decorated capsular polysaccharide (CPS) from the cold-adapted Colwellia psychrerythraea 34H bacterium was recently investigated for its cryoprotectant activity. A semisynthetic mimic thereof was here prepared from microbial sourced chondroitin through a four-step strategy, involving a partial protection of the chondroitin polysaccharide as a key step for gaining an unprecedented quantitative amidation of its glucuronic acid units.

View Article and Find Full Text PDF

Fucosylated chondroitin sulfate (fCS)-a glycosaminoglycan (GAG) found in sea cucumbers-has recently attracted much attention owing to its biological properties. In particular, a low molecular mass fCS polysaccharide has very recently been suggested as a strong candidate for the development of an antithrombotic drug that would be safer and more effective than heparin. To avoid the use of animal sourced drugs, here we present the chemical transformation of a microbial sourced unsulfated chondroitin polysaccharide into a small library of fucosylated (and sulfated) derivatives thereof.

View Article and Find Full Text PDF

Chemical O-glycosylation of polysaccharides is an almost unexplored reaction. This is mainly due to the difficulties in derivatizing such complex biomacromolecules in a quantitative manner and with a fine control of the obtained structural parameters. In this work, chondroitin raw material from a microbial source was chemo- and regioselectively protected to give two polysaccharide intermediates, that acted in turn as glycosyl acceptors in fucosylation reactions.

View Article and Find Full Text PDF

Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfost7oh3ieb5t8e7en5t1sqtg6bvijr6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once