Liquefaction of high solid loadings of unpretreated corn stover pellets has been demonstrated with rheology of the resulting slurries enabling mixing and movement within biorefinery bioreactors. However, some forms of pelleted stover do not readily liquefy, so it is important to screen out lots of unsuitable pellets before processing is initiated. This work reports a laboratory assay that rapidly assesses whether pellets have the potential for enzyme-based liquefaction at high solids loadings.
View Article and Find Full Text PDFBioresour Technol
February 2020
The present work aims to determine a suitable yield-productivity balance in bioethanol production from hydrothermally pretreated sugarcane straw via pre-saccharification (PS) and simultaneous saccharification and fermentation (SSF). PS experiments were carried out evaluating effects of enzymatic dosage, biomass loading, and PS time. The performance of the whole process (PSSSF) was evaluated based on overall ethanol yield and productivity considering a simultaneous optimization (desirability function) of both variables.
View Article and Find Full Text PDFThe minimization of costs in the distillation step of lignocellulosic ethanol production requires the use of a high solids loading during the enzymatic hydrolysis to obtain a more concentrated glucose liquor. However, this increase in biomass can lead to problems including increased mass and heat transfer resistance, decreased cellulose conversion, and increased apparent viscosity with the associated increase in power consumption. The use of fed-batch operation offers a promising way to circumvent these problems.
View Article and Find Full Text PDFAlthough there are already commercial-scale productions of second generation (2G) ethanol, focusing efforts on process optimization can be of key importance to make the production cost-effective in large scale. In this scenario, mathematical models may be useful in design, scale-up, optimization, and control of bioreactors. For this reason, the aim of this work was to study the kinetics of the enzymatic hydrolysis of cellulose from sugarcane straw.
View Article and Find Full Text PDFOne of the major process bottlenecks for viable industrial production of second generation ethanol is related with technical-economic difficulties in the hydrolysis step. The development of a methodology to choose the best configuration of impellers towards improving mass transfer and hydrolysis yield together with a low power consumption is important to make the process cost-effective. In this work, four dual impeller configurations (DICs) were evaluated during hydrolysis of sugarcane bagasse (SCB) experiments in a stirred tank reactor (3 L).
View Article and Find Full Text PDF