Antimicrobial peptides (AMPs) are produced to control bacteria, fungi, protozoa, and other infectious agents. Sand fly larvae develop and feed on a microbe-rich substrate, and the hematophagous females are exposed to additional pathogens. We focused on understanding the role of the AMPs attacin (Att), cecropin (Cec), and four defensins (Def1, Def2, Def3, and Def4) in the main vector of visceral leishmaniasis in the Americas.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2019
Despite the increasing number of studies concerning insect immunity, immune responses in the presence of infection has not been widely investigated. The few available studies analyzed the role of the Toll and IMD pathways involved in response against and microbial infections. Nevertheless, effector molecules responsible for controlling sand fly infections have not been identified.
View Article and Find Full Text PDFIn this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively.
View Article and Find Full Text PDFHematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of , the main vector of visceral leishmaniasis in the Americas.
View Article and Find Full Text PDFBACKGROUND The insect chitinase gene family is composed by more than 10 paralogs, which can codify proteins with different domain structures. In Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil, a chitinase cDNA from adult female insects was previously characterized. The predicted protein contains one catalytic domain and one chitin-binding domain (CBD).
View Article and Find Full Text PDFMembers of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated.
View Article and Find Full Text PDFPeripheral nerve lesions are considered the most relevant symptoms of leprosy, a chronic infectious disease caused by Mycobacterium leprae. The strategies employed by M. leprae to infect and multiply inside Schwann cells (SCs), however, remain poorly understood.
View Article and Find Full Text PDFProteases are commonly involved in bacterial pathogenesis and their inhibition has represented a successful therapeutic approach to treat infectious diseases. However, there is little information on the role of proteases in the pathogenesis of Mycobacteria. Five of these genes, three coding for putative secreted proteases, were selected in the present study to investigate their expression in Mycobacterium leprae isolated from skin biopsies of multibacillary leprosy patients.
View Article and Find Full Text PDF