Background: Reduced dopamine D2 receptor (D2R) ligand binding has repeatedly been demonstrated in the striatum of humans with alcohol use disorder (AUD). The attenuated D2R binding has been suggested to reflect a reduced D2R density, which in turn has been proposed to drive craving and relapse. However, results from rodent studies addressing the effects of alcohol drinking on D2R density have been inconsistent.
View Article and Find Full Text PDFStudies on serotonin-selective reuptake inhibitors have established that disturbances in the ascending 5-HT neuron systems and their 5-HT receptor subtypes and collateral networks to the forebrain contribute to the etiology of major depression and are targets for treatment. The therapeutic action of serotonin-selective reuptake inhibitors is of proven effectiveness, but the mechanisms underlying their effect are still unclear. There are many 5-HT subtypes involved; some need to be blocked (e.
View Article and Find Full Text PDFPharmacol Biochem Behav
April 2017
Adenosine 2A receptor (A2AR) agonists were indicated to reduce cocaine reward and cocaine seeking mainly through activation of antagonistic allosteric A2AR-dopamine D2R (D2R) interactions in A2AR-D2R heteroreceptor complexes. Furthermore, it was shown that modulation of cocaine reward involves antagonistic A2AR-D2R interactions in the ventral but not the dorsal striatum in rats. In the current work the proximity ligation assay (PLA) was used to further study the A2AR-D2R heteroreceptor complexes in the nucleus accumbens shell and core as well as the dorsal striatum under the influence of cocaine self-administration in rats.
View Article and Find Full Text PDFNew findings show existence of FGFR1-5-HT1A heteroreceptor complexes in 5-HT nerve cells of the dorsal and median raphe nuclei of the rat midbrain and hippocampus. Synergistic receptor-receptor interactions in these receptor complexes indicated their enhancing role in hippocampal plasticity. The existence of FGFR1-5-HT1A heteroreceptor complexes also in midbrain raphe 5-HT nerve cells open up the possibility that antidepressant drugs by increasing extracellular 5-HT levels can cause an activation of the FGF-2/FGFR1 mechanism in these nerve cells as well.
View Article and Find Full Text PDFThe ascending midbrain 5-HT neurons known to contain 5-HT1A autoreceptors may be dysregulated in depression due to a reduced trophic support. With in situ proximity ligation assay (PLA) and supported by co-location of the FGFR1 and 5-HT1A immunoreactivities in midbrain raphe 5-HT cells, evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes were obtained in the dorsal and median raphe nuclei of the Sprague-Dawley rat. Their existence in the rat medullary raphe RN33B cell cultures was also established.
View Article and Find Full Text PDFWe have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3-directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these transgenic mouse embryos.
View Article and Find Full Text PDF