This study investigates the sintering behaviour and properties of WC-based composites in which WC was mixed with W5vol%Ni in concentrations of 10vol% and 20vol%. Colloidal processing in water and spark plasma sintering were employed to disperse the WC particles and facilitate sintering. The addition of W5vol%Ni improved the sintering process, as evident from a lower onset temperature of shrinkage determined through dilatometric studies.
View Article and Find Full Text PDFColloidal processing techniques, based on the suspension of powders in a liquid, are very versatile techniques to fabricate porous structures. They can provide customized pores, shapes and surfaces through the control of operational parameters, being the base of the alternative additive manufacture processes. In this work disperse and stable titanium aqueous slurries has been formulated in order to process porous materials by the incorporation of methylcellulose (MC) as a gelation agent and ammonium bicarbonate as an expansive porogen.
View Article and Find Full Text PDFAmong several ions playing a vital role in the body, Sr and Mg are involved in the mechanism of bone formation, making them especially useful for bone tissue engineering applications. Recently, polylactic acid (PLA)/Mg composites have emerged as a promising family of biomaterials due to their inherent biocompatibility and biodegradability properties. In these composites, polymer and bio-metal have a synergetic effect-while the PLA inhibits the Mg fast reactivity, Mg provides bioactivity to the inert polymer buffering the medium pH during degradation.
View Article and Find Full Text PDFBiomed Mater
February 2021
Core-sheath nanofibrous scaffolds from polyvinyl alcohol (PVA)-strontium ranelate (SrR)-Polycaprolactone (PCL) were prepared by water in oil electrospinning method. Thus, PCL (the oil phase) was used as the shell part and a mixture of PVA and SrR (the water phase) was inserted in the core. The amounts of SrR was varied from 0 to 15 wt.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2020
Among strontium-based drugs, the Strontium ranelate (SrR) is a divalent strontium salt of ranelic acid which has an overall effect over the bone microarchitecture improvement. However, some findings reveal that the SrR affects in an opposite manner to the cell proliferation and osteoblastic differentiation, based on its concentration. Consequently, its release should be controlled.
View Article and Find Full Text PDF