Publications by authors named "Antonio J Hinojosa"

Sensory processing in the cortex adapts to the history of stimulation but the mechanisms are not understood. Imaging the primary visual cortex of mice we find here that an increase in stimulus contrast is not followed by a simple decrease in gain of pyramidal cells; as many cells increase gain to improve detection of a subsequent decrease in contrast. Depressing and sensitizing forms of adaptation also occur in different types of interneurons (PV, SST and VIP) and the net effect within individual pyramidal cells reflects the balance of PV inputs, driving depression, and a subset of SST interneurons driving sensitization.

View Article and Find Full Text PDF

Key Points: Motion artefacts associated with motor behaviour are an inevitable problem of multiphoton imaging in awake behaving animals, particularly when imaging synapses. Correction of axial motion artefacts usually requires volumetric imaging resulting in slower rates of acquisition. We describe a method to correct z-motion artefacts that is easy to implement and allows population imaging of synaptic activity while scanning a single plane in a standard multiphoton microscope.

View Article and Find Full Text PDF

How neuronal connections are established and organized into functional networks determines brain function. In the mammalian cerebral cortex, different classes of GABAergic interneurons exhibit specific connectivity patterns that underlie their ability to shape temporal dynamics and information processing. Much progress has been made toward parsing interneuron diversity, yet the molecular mechanisms by which interneuron-specific connectivity motifs emerge remain unclear.

View Article and Find Full Text PDF

Functional networks in the mammalian cerebral cortex rely on the interaction between glutamatergic pyramidal cells and GABAergic interneurons. Both neuronal populations exhibit an extraordinary divergence in morphology and targeting areas, which ultimately dictate their precise function in cortical circuits. How these prominent morphological differences arise during development is not well understood.

View Article and Find Full Text PDF