Nosocomial infections or healthcare-associated infections, normally develops after the healthcare treatment in the hospital. Most of them are caused by infected medical devices. Plastics are the most common materials for manufacturing these devices because of their good processability, sterilization efficacy, ease of handling and harmlessness, however, it usually do not display antimicrobial properties.
View Article and Find Full Text PDFPolymers (Basel)
March 2023
A significant mechanical properties mismatch between natural bone and the material forming the orthopedic implant device can lead to its failure due to the inhomogeneous loads distribution, resulting in less dense and more fragile bone tissue (known as the stress shielding effect). The addition of nanofibrillated cellulose (NFC) to biocompatible and bioresorbable poly(3-hydroxybutyrate) (PHB) is proposed in order to tailor the PHB mechanical properties to different bone types. Specifically, the proposed approach offers an effective strategy to develop a supporting material, suitable for bone tissue regeneration, where stiffness, mechanical strength, hardness, and impact resistance can be tuned.
View Article and Find Full Text PDFSeveral synthetic and natural materials have been studied for the confection of temporary grafts for application in regenerative medicine, however, the development of a material with adequate properties remains a challenge, mainly because its degradation kinetics in biological systems. Nature provides materials with noble properties that can be used as such for many applications, thus, taking advantage of the available morphology and assembled structures of plants, we propose to study the vegetable stems for use as temporary graft. Since thedegradation is maybe one of the most important features of the temporary grafts, here we have implanted the plant stems from pumpkin, papaya, and castor into the subepithelial tissue of animals and followed their biodegradation process and the local inflammatory response.
View Article and Find Full Text PDFCellulose nanofibers (CNF) are renewable and biodegradable nanomaterials with attractive barrier, mechanical and surface properties. In this work, three different recombinant enzymes: an endoglucanase, a xylanase and a lytic polysaccharide monooxygenase, were combined to enhance cellulose fibrillation and to produce CNF from sugarcane bagasse (SCB). Prior to the enzymatic catalysis, SCB was chemically pretreated by sodium chlorite and KOH, while defibrillation was accomplished via sonication.
View Article and Find Full Text PDFThe study deals with the synthesis of thermally reversible hydrogels from modified cellulose nanofibers via the Diels-Alder "click" reaction in an aqueous medium. "Never-dried" cellulose fibres derived from hardwood were submitted to shearing and surface TEMPO-oxidation before being modified with furfurylamine. The ensuing pendant furan moieties were reacted with a water-soluble bismaleimide via Diels-Alder coupling at 65 °C to produce a hydrogel, whose deconstruction was induced by the corresponding retro-Diels-Alder reaction carried out at 95 °C.
View Article and Find Full Text PDFChitosan is high potential material for new applications due to its properties, especially its antimicrobial activity, and because it is one of the most abundant natural polymers. However, chitosan can be processed only from solution limiting its applications. Methods for processing chitosan in molten have been a subject of recent interest.
View Article and Find Full Text PDFThe conventional vulcanization process applied to elastomers is irreversible and hinders therefore their useful recycling. We demonstrate here that natural rubber can be reversibly crosslinked via the Diels-Alder coupling of furan and maleimide moieties. The furan-modified natural rubber used in this strategy was also exploited to bind it to maleimide-modified nanocellulose, thus generating a covalently crosslinked composite of these two renewable polymers.
View Article and Find Full Text PDFFuran-modified poly(butadiene) prepared by the thiol-ene click reaction is crosslinked with bismaleimides through the Diels-Alder reaction, giving rise to a novel recyclable elastomer. This is possible because of the thermal reversibility of the adducts responsible for the formation of the network. The use of this strategy provides the possibility to produce recyclable tires.
View Article and Find Full Text PDFThis investigation reports the first application of admicellar polymerization to cellulose nanofibers in the form of bacterial cellulose, microfibrillated cellulose, and cellulose nanowhiskers using styrene and ethyl acrylate. The success of this physical sleeving was assessed by SEM, FTIR, and contact angle measurements, providing an original and simple approach to the modification of cellulose nanofibers in their pristine aqueous environment.
View Article and Find Full Text PDFNatural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials.
View Article and Find Full Text PDFTernary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high-shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends produced.
View Article and Find Full Text PDFSelf-assembled electrodes consisting of TiO(2) nanoparticles and poly(vinyl sulfonic acid) (PVS) were prepared by the layer-by-layer (LbL) technique. The electrostatic interaction between the TiO(2) nanoparticles and PVS allowed the growth of visually uniform multilayers of the composite, with high control of the thickness and nanoarchitecture. The electrochemical and chromogenic properties of these TiO(2)/PVS films were examined in an electrolytic solution of 0.
View Article and Find Full Text PDFElectroactive nanostructured films of chitosan (Ch) and tetrasulfonated metallophthalocyanines containing nickel (NiTsPc), copper (CuTsPc), and iron (FeTsPc) were produced via the electrostatic layer-by-layer (LbL) technique. The multilayer formation was monitored with UV-vis spectroscopy by measuring the increase of the Q-band absorption from metallophthalocyanines. Results from transmission and reflection infrared spectroscopy suggested specific interactions between SO(3)(-) groups from metallophthalocyanines and NH(3)(+) from chitosan.
View Article and Find Full Text PDF