Publications by authors named "Antonio Heras-Garvin"

In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive.

View Article and Find Full Text PDF

Background: Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by aggregated α-synuclein (α-syn) in oligodendrocytes and accompanied by striatonigral and olivopontocerebellar degeneration and motor symptoms. Key features of MSA are replicated in the PLP-α-syn transgenic mouse, including progressive striatonigral degeneration and motor deterioration. There are currently no approved treatments for MSA.

View Article and Find Full Text PDF

Genetic Alzheimer's disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation.

View Article and Find Full Text PDF

Background: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown.

View Article and Find Full Text PDF

Since its discovery 30 years ago, α-synuclein (α-syn) has been one of the most studied proteins in the field of neuroscience. Dozens of groups worldwide have tried to reveal not only its role in the CNS but also in other organs. α-syn has been linked to several processes essential in brain homeostasis such as neurotransmitter release, synaptic function, and plasticity.

View Article and Find Full Text PDF

Background: Misfolded oligomeric α-synuclein plays a pivotal role in the pathogenesis of α-synucleinopathies including Parkinson's disease and multiple system atrophy, and its detection parallels activation of microglia and a loss of neurons in the substantia nigra pars compacta. Here we aimed to analyze the therapeutic efficacy of PD03, a new AFFITOPE® immunotherapy approach, either alone or in combination with Anle138b, in a PLP-α-syn mouse model.

Methods: The PLP-α-syn mice were treated with PD03 immunotherapy, Anle138b, or a combination of two.

View Article and Find Full Text PDF

Background: Multiple system atrophy (MSA) and Parkinson's disease (PD) patients develop respiratory and cardiovascular disturbances including obstructive sleep apnea, orthostatic hypotension, and nocturnal stridor. We hypothesized that, associated with these respiratory and cardiovascular disturbances, hypoxic events may occur in MSA and PD brains that may play a role in disease progression. The objective of this study was to evaluate the presence of hypoxia in nonneurological controls and PD and MSA patients.

View Article and Find Full Text PDF

Objective: Cognitive impairment in multiple system atrophy (MSA) is common, but remain poorly characterized. We evaluated cognitive and behavioral features in MSA patients and assessed between-group differences for MSA subtypes and the effect of orthostatic hypotension (OH) on cognition.

Methods: This retrospective study included 54 patients with clinical diagnosis of possible and probable MSA referred to the Department of Neurology at Medical University of Innsbruck between 2000 and 2018.

View Article and Find Full Text PDF

Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder characterized by rapidly progressive autonomic and motor dysfunction. Pathologically, MSA is mainly characterized by the abnormal accumulation of misfolded α-synuclein in the cytoplasm of oligodendrocytes, which plays a major role in the pathogenesis of the disease. Striatonigral degeneration and olivopontecerebellar atrophy underlie the motor syndrome, while degeneration of autonomic centers defines the autonomic failure in MSA.

View Article and Find Full Text PDF

Aim: Pre-clinical studies in models of multiple sclerosis and other inflammatory disorders suggest that high-salt diet may induce activation of the immune system and potentiate inflammation. However, high-salt diet constitutes a common non-pharmacological intervention to treat autonomic problems in synucleinopathies such as Parkinson's disease and multiple system atrophy. Since neuroinflammation plays an important pathogenic role in these neurodegenerative disorders, we asked here whether high-salt diet may aggravate the disease phenotype in a transgenic model of multiple system atrophy.

View Article and Find Full Text PDF

Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder that has no cure and very limited treatment options. MSA is characterized by deposition of fibrillar α-synuclein (α-syn) in glial cytoplasmic inclusions in oligodendrocytes. Similar to other synucleinopathies, α-syn self-assembly is thought to be a key pathologic event and a prominent target for disease modification in MSA.

View Article and Find Full Text PDF

Background: MSA is a fatal neurodegenerative disease characterized by autonomic failure and severe motor impairment. Its main pathological hallmark is the accumulation of α-synuclein in oligodendrocytes, leading to glial and neuronal dysfunction and neurodegeneration. These features are recapitulated in the PLP-hαSyn mouse model expressing human α-synuclein in oligodendrocytes.

View Article and Find Full Text PDF

Background: Recent epidemiological evidence has linked hypoxia with the development of Alzheimer disease (AD). A number of in vitro and in vivo studies have reported that hypoxia can induce amyloid-β peptide accumulation through various molecular mechanisms including the up-regulation of the amyloid-β precursor protein, the β-secretase Bace1, or the γγ-secretase complex components, as well as the down-regulation of Aβ-degrading enzymes.

Objectives: To investigate the effects of acute and chronic sustained hypoxia in Aβ generation in vivo.

View Article and Find Full Text PDF

Early adaptive responses to hypoxia are essential for cell survival, but their nature and underlying mechanisms are poorly known. We have studied the post-transcriptional changes in the proteome of mammalian cells elicited by acute hypoxia and found that phosphorylation of eukaryotic elongation factor 2 (eEF2), a ribosomal translocase whose phosphorylation inhibits protein synthesis, is under the precise and reversible control of O(2) tension. Upon exposure to hypoxia, phosphorylation of eEF2 at Thr(56) occurred rapidly (<15 min) and resulted in modest translational arrest, a fundamental homeostatic response to hypoxia that spares ATP and thus facilitates cell survival.

View Article and Find Full Text PDF