Publications by authors named "Antonio Gil-Serrano"

strain CIAT 899 possesses outstanding agronomic properties as it displays tolerance to environmental stresses, a broad host range and high effectiveness in fixing nitrogen with the common bean ( L.); in addition, it carries intriguing features such as five copies of the regulatory gene, and the capacity to synthesize a variety of nodulation factors (NFs), even in a flavonoid-independent manner, when submitted to abiotic stresses. However, the roles of several genes of the repertoire of CIAT 899 remain to be determined.

View Article and Find Full Text PDF

The symbiosis between rhizobia and legumes is characterized by a complex molecular dialogue in which the bacterial NodD protein plays a major role due to its capacity to activate the expression of the nodulation genes in the presence of appropiate flavonoids. These genes are involved in the synthesis of molecules, the nodulation factors (NF), responsible for launching the nodulation process. Rhizobium tropici CIAT 899, a rhizobial strain that nodulates Phaseolus vulgaris, is characterized by its tolerance to multiple environmental stresses such as high temperatures, acidity or elevated osmolarity.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103 Rif , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 Rif nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu.

View Article and Find Full Text PDF

Seed germination and early seedling development have been studied in the recalcitrant species using targeted transcriptional, hormonal, and sugar analysis. Embryos and seedlings were collected at eight morphologically defined developmental stages, S0-S7. A typical triphasic water uptake curve was observed throughout development, accompanied by a decrease in sucrose and an increase in glucose and fructose.

View Article and Find Full Text PDF

Aeromonas sp. AMG272 is a Gram-negative bacterium that has been isolated from agricultural soil and studied for its plant growth-promoting activities. Structures of the O-specific polysaccharide chain of the AMG272 lipopolysaccharide and its capsular polysaccharide were elucidated using GLC-MS and NMR spectroscopy.

View Article and Find Full Text PDF

In the symbiotic associations between rhizobia and legumes, NodD promotes the expression of the nodulation genes in the presence of appropriate flavonoids. This set of genes is implied in the synthesis of Nodulation factors, which are responsible for launching the nodulation process. Rhizobium tropici CIAT 899 is the most successful symbiont of Phaseolus vulgaris and can nodulate a variety of legumes.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103-Rif, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S.

View Article and Find Full Text PDF

The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR.

View Article and Find Full Text PDF

Background: Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes-with an emphasis on common bean (Phaseolus vulgaris)-and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated.

View Article and Find Full Text PDF

Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy.

View Article and Find Full Text PDF

The lipopolysaccharide of a Gram-negative bacterium having a putative plant-growth promoting activity (Pantoea ananatis AEP17) has been isolated and subjected to partial hydrolysis. The O-antigen has been studied by mass spectrometry and NMR experiments. On the basis of these experiments it is concluded that the following repeating unit is present in the polysaccharide: →3)-β-d-GlcpNAc-(1→3)[α-d-GalpAN-(1→2)]-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→ The occurrence of d-galacturonamide (GalAN) is unusual in bacterial O-polysaccharides.

View Article and Find Full Text PDF

The Sinorhizobium fredii HH103 rkp-3 region has been isolated and sequenced. Based on the similarities between the S. fredii HH103 rkpL, rkpM, rkpN, rkpO, rkpP, and rkpQ genes and their corresponding orthologues in Helicobacter pylori, we propose a possible pathway for the biosynthesis of the S.

View Article and Find Full Text PDF

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU, rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and (1)H-NMR analyses did not detect KPS in these mutants.

View Article and Find Full Text PDF

Legume-nodulating rhizobia use N-acyl homoserine lactones (AHLs) to regulate several physiological traits related to the symbiotic plant-microbe interaction. In this work, we show that Sinorhizobium fredii SMH12, Rhizobium etli ISP42 and Rhizobium sullae IS123, three rhizobial strains with different nodulation ranges, produced a similar pattern of AHL molecules, sharing, in all cases, production of N-octanoyl homoserine lactone and its 3-oxo and/or 3-hydroxy derivatives. Interestingly, production of AHLs was enhanced when these three rhizobia were grown in the presence of their respective nod-gene-inducing flavonoid, while a new molecule, C14-HSL, was produced by S.

View Article and Find Full Text PDF

The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp.

View Article and Find Full Text PDF

In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The rkpJ- and rkpU-encoded products are orthologous to Escherichia coli proteins involved in capsule export. S.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103 produces cyclic beta glucans (CG) composed of 18 to 24 glucose residues without or with 1-phosphoglycerol as the only substituent. The S. fredii HH103-Rifr cgs gene (formerly known as ndvB) was sequenced and mutated with the lacZ-gentamicin resistance cassette.

View Article and Find Full Text PDF

The strain Lactobacillus pentosus LPS26 produces a capsular polymer composed of a high- (2.0x10(6)Da) (EPS A) and a low-molecular mass (2.4x10(4)Da) (EPS B) polysaccharide when grown on semi-defined medium containing glucose as the carbon source.

View Article and Find Full Text PDF

The lipopolysaccharide of Sinorhizobium fredii SMH12, a wide-range host bacterium isolated from nodulated soybean plants growing in Vietnam, has been studied. Isolation of lipopolysaccharide by the phenol-water method leads to a mixture of two polysaccharides; polyacrylamide gel electrophoresis indicates that both are possibly lipopolysaccharides. The structures of the O-antigen of the main lipopolysaccharide and its deacetylated form are determined by sugar and methylation analysis, partial hydrolysis, lithium degradation, ESI-MS/MS, and NMR studies.

View Article and Find Full Text PDF

Main nodulation signal molecules in the peanut-bradyrhizobia interaction were examined. Flavonoids exuded by Arachis hypogaea L. cultivar Tegua were genistein, daidzein and chrysin, the latest being released in lower quantities.

View Article and Find Full Text PDF

Rhizobium gallicum is a fast-growing bacterium found in European, Australian and African soils; it was first isolated in France. It is a microsymbiont which is able to nodulate plants of the genus Phaseolus. Rhizobium gallicum bv.

View Article and Find Full Text PDF

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S.

View Article and Find Full Text PDF

Rhizobium tropici CIAT899 has been cataloged as a nodulator of bean, a plant often growing in areas characterized by highly acidic soils. The purpose of this work was to explore the effects of acidity on the production of Nod factors by this strain and their impact on the establishment of effective symbioses. We report that acidity increases rhizobial Nod factors production, and we exhaustively study the nodulation factor structures produced under abiotic stress.

View Article and Find Full Text PDF

We have determined the structure of a capsular polysaccharide from Sinorhizobium fredii HWG35. This polysaccharide was isolated following the standard protocols applied for lipopolysaccharide isolation. On the basis of monosaccharide analysis, methylation analysis, mass spectrometric analysis, one-dimensional (1)H and (13)C NMR, and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the following disaccharide repeating unit: -->6)-2,4-di-O-methyl-alpha-d-Galp-(1-->4)-beta-d-GlcpA-(1-->.

View Article and Find Full Text PDF

We have investigated in Sinorhizobium fredii HH103-1 (=HH103 Str(r)) the influence of the nolR gene on the production of three different bacterial symbiotic signals: Nod factors, signal responsive (SR) proteins, and exopolysaccharide (EPS). The presence of multiple copies of nolR (in plasmid pMUS675) repressed the transcription of all the flavonoid-inducible genes analyzed: nodA, nodD1, nolO, nolX, noeL, rhcJ, hesB, and y4pF. Inactivation of nolR (mutant SVQ517) or its overexpression (presence of pMUS675) altered the amount of Nod factors detected.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionok95p76crdr8liggu5rbsiga2944vlqt): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once