Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.
View Article and Find Full Text PDFThis work reports the preliminary results of the development of composite self-assembling membranes obtained by the combination of reduced graphene oxide (rGO) with commercial Degussa P25 titanium dioxide (TiO). The purpose is to demonstrate the possibility of combining, in the same self-standing material, the capability to treat wastewater containing both inorganic and organic pollutants by exploiting the established ability of rGO to capture metal ions together with that of TiO to degrade organic substances. Moreover, this study also investigates the potential photocatalytic properties of tionite (TIO), to demonstrate the feasibility of replacing commercial TiO with such waste-derived TiO-containing material, fulfilling a circular economy approach.
View Article and Find Full Text PDFThis study focused on the reduction of the treatment cost of mature landfill leachate (LL) by enhancing the coagulation pre-treatment before a UVA-LED photo-Fenton process. A more efficient advanced coagulation pretreatment was designed by combining conventional coagulation (CC) and electro-coagulation (EC). Regardless of the order in which the two coagulations were applied, the combination achieved more than 73% color removal, 80% COD removal, and 27% SUVA removal.
View Article and Find Full Text PDFFenton processes are promising wastewater treatment alternatives for bio-recalcitrant compounds. Three different methods (i.e.
View Article and Find Full Text PDFThe aim of this study was to provide new insights into how intraspecific variability in the response of key functional traits to drought dictates the interplay between gas-exchange parameters and the hydraulic architecture of European beech (Fagus sylvatica L.). Considering the relationships between hydraulic and leaf functional traits, we tested whether local adaptation to water stress occurs in this species.
View Article and Find Full Text PDFThe paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality.
View Article and Find Full Text PDFLeaf hydraulic conductance (Kleaf) is known to be an important determinant of plant gas exchange and photosynthesis. Little is known about the long-term impact of different environmental factors on the hydraulic construction of leaves and its eventual consequences on leaf gas exchange. In this study, we investigate the impact of soil water availability on Kleaf of Fraxinus ornus L.
View Article and Find Full Text PDFThe physiological significance of ion-mediated enhancement of xylem hydraulic conductivity (K(h)) in planta has recently been questioned. The phenomenon has been suggested to be an artefact caused by the use of deionized water as a reference fluid during measurements of the impact of different ions on K(h). In the present study, ion-mediated changes in K(h) were measured in twigs of five woody species during perfusion with 25 mM KCl compared with different reference fluids like deionized water, a commercial mineral water containing different ions (including 0.
View Article and Find Full Text PDFXylem hydraulic conductivity (K(s)) in stems of tobacco (Nicotiana tabacum) wild-type SR1 was compared to that of PG7 and PG16, two transgenic lines with increased levels of expression of the gene encoding the Aspergillus niger endopolygalacturonase (AnPGII). Activity of AnPGII removes in planta blocks of homogalacturonan (HG) with deesterified carboxyls, thus increasing the degree of neutrality of pectins. The effect of K+ was tested in increasing stem K(s) using model plants with more neutral polysaccharides in primary walls and, hence, in intervessel pit membranes.
View Article and Find Full Text PDFChanges in hydraulic conductivity (K(h)) were measured in stems of Laurus nobilis L. during perfusion with KCl, NaCl or sucrose solutions. Ionic solutes induced marked increase of K(h) with respect to deionized water but sucrose had no effect.
View Article and Find Full Text PDFWe investigated the hydraulic architecture of young olive trees either self-rooted or grafted on rootstocks with contrasting size-controlling potential. Clones of Olea europea L. (Olive) cv 'Leccino' inducing vigorous scion growth (Leccino 'Minerva', LM) or scion dwarfing (Leccino 'Dwarf', LD) were studied in different scion/rootstock combinations (LD, LM, LD/LD, LM/LM, LD/LM and LM/LD).
View Article and Find Full Text PDFContinental waters are complex resources in terms of a measurable physical quantity, and measuring them requires a good knowledge of total water availability. In this research, an accounting physical input-output table (PIOT) was applied to evaluate total water resources and gross annual availabilities at each stage of the natural-artificial water cycle. These stages are considered subsystems of a continental water resource system describing water transfers for an average year within 13 administrative basins of Spain.
View Article and Find Full Text PDFThe leaf hydraulic conductance (K) of Coffea arabica L. was measured for shoots exposed to non-lethal temperature stress or to a freeze-thaw cycle, and compared with K of non-stressed samples (controls). Exposure to temperatures below 6°C for 1 h caused measurable damage to the functional integrity of cell membranes as shown by increased membrane leakiness to electrolytes.
View Article and Find Full Text PDFThe use of different waste materials: pine bark, coconut fibre and sewage sludge as substrates in the production of ornamental plants was studied, with an special interest on the suitability of coconut fibre as growing substrate for conifer plants. The plant species tested were Pinus pinea, Cupressus arizonica and C. sempervirens and the substrate mixtures were: (1) pine bark, (2) pine bark with 15% of sewage sludge compost, (3) pine bark with 30% of sewage sludge compost, (4) coconut fibre, (5) coconut fibre with 15% of sewage sludge compost and (6) coconut fibre with 30% of sewage sludge compost.
View Article and Find Full Text PDFThe kinetics of leaf vein recovery from cavitation-induced embolism was studied in plants of sunflower cv. Margot, together with the impact of vein embolism on the overall leaf hydraulic conductance (Kleaf). During the air-dehydration of leaves to leaf water potentials (Psi L) of -1.
View Article and Find Full Text PDFLeaf growth, predawn leaf water potential (Ψ), evapotranspiration, stem maximum permeability, and its percentage loss of hydraulic conductivity (PLC) were measured in rooted cuttings of selected clones of Eucalyptus globulus Labill. subjected to well-watered and drought conditions. Drought significantly reduced evapotranspiration, leaf growth and maximum permeability.
View Article and Find Full Text PDF