Three different type of bioplastics were studied. They were made of amylose only, argan proteins only, while the third type contained both polymers at a 1:1 ratio. Their degradation was studied in three different type of soils fully characterized regarding their composition.
View Article and Find Full Text PDFFood authentication is a growing concern with rising complexities of the food supply network, with fish being an easy target of food fraud. In this regard, NIR spectroscopy has been used as an efficient tool for food authentication. This article reviews the latest research advances on NIR based fish authentication.
View Article and Find Full Text PDFMars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we grew potato ( L.
View Article and Find Full Text PDFCompost from municipal solid waste (MSWC) can represent a resource for the environmental management of soils contaminated with potentially toxic elements (PTEs), since it can reduce their mobility and improve soil fertility. However, the long-term impact of compost on soil recovery has been poorly investigated. To this end, the influence of a MSWC added at different rates (i.
View Article and Find Full Text PDFHigher plants will play a key role in human survival in Space, being able to regenerate resources and produce fresh food. However, the creation of a fertile substrate based on extra-terrestrial soils is still a challenge for space cultivation. We evaluated the adaptability of soybean ( (L.
View Article and Find Full Text PDFTo make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.
View Article and Find Full Text PDFThe in-situ resource utilisation (ISRU), in terms of native rocky materials and astronaut wastes, is crucial in contests of soil-based space-farming. Nevertheless, extra-terrestrial soils are very different from Earth soils, lacking any form of organic carbon and associated macro and micronutrients. In this research, we aimed to study and modify two commercially available Lunar and Martian regolith simulants (LHS-1 from Exolith Lab and MMS-1 from Martian Garden) to make them an adequate medium for plant growth.
View Article and Find Full Text PDFThe supplementation of bioactive compounds in astronaut's diets is undeniable, especially in the extreme and inhospitable habitat of future space settlements. This study aims to enhance the Martian and Lunar regolith fertility (testing two commercial simulants) through the provision of organic matter (manure) as established by resource utilization (ISRU) approach. In this perspective, we obtained 8 different substrates after mixing Mojave Mars Simulant (MMS-1) or Lunar Highlands Simulant (LHS-1), with four different rates of manure (0, 10, 30, and 50%, w/w) from monogastric animals.
View Article and Find Full Text PDFIn this work, a grass-based phytoremediation system integrated with an organic amendment and biostimulants was evaluated for remediating contaminated sites. Plant growth and biological fertility were monitored to assess the efficacy of a vegetative cap used as a safety measure to reduce sanitary and environmental risks of industrially contaminated soils and soil-washing sludges. Both matrices were potentially contaminated with Pb and Zn with an ecological risk index from low to moderate.
View Article and Find Full Text PDFThe risk assessment of phosphate mining/processing industrial activities on the environment and human health is crucial to properly manage and minimize the risks over time. In this work, we studied the inhalation and dermal bioaccessibility of potentially toxic metals (PTM) in different particle-size fractions of urban soil, sediments and tailings from Gafsa-Metlaoui phosphate mining area, to assess afterwards the non-carcinogenic (NCR) and carcinogenic (CR) risks for the health of local citizens and workers constantly exposed to airborne particulate matter (PM) originating from these sources of contamination. Samples were separated in particle-size fractions by centrifugation and consecutive cycles of sedimentation and decanting.
View Article and Find Full Text PDFHeavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate's fertility by the addition of organic residues produced in situ.
View Article and Find Full Text PDFThe configuration of a biologically fertile substrate for edible plant growth during long-term manned missions to Mars constitutes one of the main challenges in space research. Mars regolith amendment with compost derived from crew and crop waste in bioregenerative life support systems (BLSS) may generate a substrate able to extend crew autonomy and long-term survival in space. In this context, the aim of our work was threefold: first, to study the geochemistry and mineralogy of Mojave Mars Simulant (MMS-1) and the physico-chemical and hydraulic properties of mixtures obtained by mixing MMS-1 and green compost at varying rates (0:100, 30:70, 70:30, 100:0; v:v); secondly, to evaluate the potential use of MMS-1 as a growing medium of two lettuce (Lactuca sativa L.
View Article and Find Full Text PDFMetal uptake capacity and growth patterns of three cardoon cultivars (Sardo, Siciliano, and Spagnolo) were investigated for phytoremediation in a metal-contaminated soil. Metal concentrations after one and two growth rounds were measured in soil and plants by ICP-MS. Potentially and promptly available metal fractions were estimated by EDTA and ammonium nitrate.
View Article and Find Full Text PDFThe occurrence and bioaccessibility of potentially toxic elements (PTEs) in soils and sediments are investigated by many studies, especially in territories exploited by mining and ore-processing activities, nearby agriculture-driven rural cities. Accordingly, the present study aimed at evaluating the geochemical properties, potential bioavailability, and risks for environment and human health of the most concerning PTEs of study area (Gafsa mining basin, Tunisia) such as Cd, Cr, and Zn in selected soil, sediment, and mining waste samples. The extraction of these solid matrixes by modified EU-BCR sequential extraction revealed that the most easily extractable fractions of each PTE were very low (first 2 steps, < 10%), Cd was mainly associated with the oxidizable phase (likely organic matter), and Cr and Zn were mostly found in residual mineral fraction (likely occluded in non-siliceous mineral phase).
View Article and Find Full Text PDFThe risks for human health and the ecosystem due to potentially toxic elements (PTEs) were investigated in a farmland classified as potentially contaminated by Cr and Zn by analysing native vegetation and relative rhizo-soils. Rhizo-soils of different plant species were found to be enriched by Cr and Zn as well as by elements omitted from official environmental characterization, namely Cd, As and Pb. The ecological risk index (ERI) had a mean value of 510, indicating high to "very high" risk in different habitats.
View Article and Find Full Text PDFDue to carcinogenicity of hexavalent chromium [Cr(VI)], its accurate quantification in Cr-contaminated soils is of paramount importance. The aim of this work was to quantify Cr(VI) by species-specific IDMS in soil samples from two Italian case studies: A) farmland potentially contaminated by pseudo-total Cr and Zn and heavy hydrocarbons due to past illegal burial of tannery wastes; B) Solofrana valley where volcanic soils are potentially contaminated by pseudo-total Cr and Cu due to tannery activities. Hexavalent Cr extraction from soils was performed by focused microwaves (5 min at 80 °C) using 50 mM EDTA, followed by the separation of Cr species by IC and detection by ICP-MS.
View Article and Find Full Text PDFLarge variability in the spatial distribution and content of metals is generally recognised in anthropogenically-polluted soils, hence, a detailed site investigation implying the collection and analysis of a large number of soil samples is often necessary. To this regard, the selection of a rapid, cost-effective and accurate analytical technique to assess the concentration of metals in soil is of paramount importance. The overall objective of this work was to evaluate the possibility of assessing the aqua regia-extractable (AR) content of metals in soil from the multi-element profile of the soil obtained by a portable X-ray fluorescence analyser (pXRF).
View Article and Find Full Text PDFThis study aimed at combining iron and peat to produce a sorbent suitable for a simultaneous removal of cations and anions from a solution. Peat powder, an industrial residue, was coated with iron by immersing peat into iron salt solutions. The adsorption efficiency of the newly produced sorbent towards As, Cr, Cu and Zn was tested by means of batch adsorption experiments at a constant pH value of 5.
View Article and Find Full Text PDFCarrot (Daucus carota L.) is a widely consumed root vegetable, whose growth and safety might be threatened by growing-medium arsenic (As) contamination. By this work, we evaluated the effects of humic acids from Leonardite and NPK mineral fertilisation on As mobility and availability to carrot plants grown for 60 days in a volcanic soil irrigated with As-contaminated water - representing the most common scenario occurring in As-affected Italian areas.
View Article and Find Full Text PDFArsenic (As) co-precipitation is one of the major processes controlling As solubility in soils and waters. When As is co-precipitated with Al and Mg, the possible formation of layered double hydroxides (LDHs) and other nanocomposites can stabilize As in their structures thus making this toxic element less available. We investigated the nature and reactivity of Mg-Al-arsenate [As(V)] co-precipitated LDHs formed in solution affected by As concentration, pH, and aging.
View Article and Find Full Text PDFThe influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.
View Article and Find Full Text PDFThe influence of compost on the growth of bean plants irrigated with As-contaminated waters and its influence on the mobility of As in the soils and the uptake of As (as NaAs(III)O2) by plant components was studied at various compost application rates (3·10(4) and 6·10(4) kg ha(-1)) and at three As concentrations (1, 2 and 3 mg kg(-1)). The biomass and As and P concentrations of the roots, shoots and beans were determined at harvest time, as well as the chlorophyll content of the leaves and nonspecific and specifically bound As in the soil. The bean plants exposed to As showed typical phytotoxicity symptoms; no plants however died over the study.
View Article and Find Full Text PDFArsenite [As(III)] and arsenate [As(V)] sorption by Fe- and Al-based drinking-water treatment residuals (WTR) was studied as a function of particle size at different pHs, and in the presence of competing ligands, namely, phosphate, citrate, and oxalate. Both WTRs showed high affinity for As oxyanions. However, Al-WTR showed higher As(III) and As(V) sorption capacity than Fe-WTR because of their greater surface area.
View Article and Find Full Text PDFThe competitive sorption among Cu, Pb and Cr in ternary system on Na-montmorillonite at pH 3.5, 4.5 and 5.
View Article and Find Full Text PDFWe studied the sorption of As(III) and As(V) onto ferrihydrite as affected by pH, nature and concentration of organic [oxalic (OX), malic (MAL), tartaric (TAR), and citric (CIT) acid] and inorganic [phosphate (PO(4)), sulphate (SO(4)), selenate (SeO(4)) and selenite (SeO(3))] ligands, and the sequence of anion addition. The sorption capacity of As(III) was greater than that of As(V) in the range of pH 4.0-11.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.