Publications by authors named "Antonio G B Pereira"

Hydrogels based on biopolymers like Gum Arabic (GA) usually show low applicability due to weak mechanical properties. To overcome this issue, (nano)fillers are utilized as reinforcing agents. Here, GA hydrogels were reinforced by chitin nanowhiskers (CtNWs, aspect ratio of 14) isolated from the biopolymer chitin through acid hydrolysis.

View Article and Find Full Text PDF

Physical adsorption has shown to be facile and highly effective to deposit chitosan nanowhiskers (CsNWs, 60 % deacetylated, length: 247 nm, thickness: 4-12 nm, width:15 nm) on electrospun cellulose acetate nanofibers (CANFs, 560 nm) to effect complete surface charge reversal from negatively charged CANFs (-40 mV) to positively charged CsNWs-adsorbed CANFs (+8 mV). The CsNWs coverage did not alter the smooth and homogeneous morphology of fibers, as observed from SEM images. Biological assays showed the CsNWs covered nanofibers were effective against the Gram-negative bacterium E.

View Article and Find Full Text PDF

Antimicrobial films based on distinct polymer matrices, poly (vinyl alcohol) (PVA) or poly (N-isopropylacrylamide) (PNIPAAm), and silver nanoparticles (AgNPs) immobilized onto cellulose nanowhiskers (CWs) were successfully prepared by either casting or electrospinning. CWs were first functionalized with carboxylate groups (labeled as CWSAc) and later they were immersed in a silver nitrate solution (AgNO). After Ag ions anchored in the COO groups are chemically reduced to produce AgNPs.

View Article and Find Full Text PDF

Cellulose nanowhiskers (CNWs, 90% crystalline) were used to enhance the adsorption capacity of chitosan-g-poly(acrylic acid) hydrogel. The composites up to 20w/w-% CNWs showed improved adsorption capacity towards methylene blue (MB) as compared to the pristine hydrogel. At 5w/w-% CNWs the composite presented the highest adsorption capacity (1968mg/g).

View Article and Find Full Text PDF

Background: Gold nanoparticles (AuNPs) have enormous potential for application in imaging, diagnosis, and therapies in the medical field. AuNPs are renowned for their localized surface plasmon resonance (LSPR) properties, large surface area, and biocompatibility with body fluids. Further, AuNPs have featured prominently in new methodologies for cancer treatments, like photothermal and imaging therapies.

View Article and Find Full Text PDF

Robust and efficient methylene blue (MB) adsorbent was prepared based on starch/cellulose nanowhiskers hydrogel composite. Maximum MB adsorption capacity of ∼2050mgperg of dried hydrogel was obtained with the composite at 5wt.% of cellulose nanowhiskers and at pH 5.

View Article and Find Full Text PDF

Surface deacetylation of chitin nanowhiskers (CtNWs) to chitosan-sheath/chitin-core nanowhiskers (CsNWs) was successfully monitored by liquid-state high-resolution NMR of colloidal suspensions of these never-dried nanowhiskers. CtNWs were derived from acid hydrolysis (3N HCl, 30mL/g, 90min, 104°C) of chitin at 65% yield and 86% CrI. Deacetylation (50% NaOH, 48h, 50°C) of CtNWs generated CsNWs with unchanged nanowhisker morphology and overall length and width dimensions, but a reduced CrI of 54%.

View Article and Find Full Text PDF

Polysaccharide-based device for oral delivery of heparin (HP) was successfully prepared. Previously synthesized N,N-dimethyl chitosan (DMC) (86% dimethylated by (1)H NMR spectroscopy) was complexed with HP by mixing HP and DMC aqueous solutions (both at pH 3.0).

View Article and Find Full Text PDF

Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity.

View Article and Find Full Text PDF

Chitosan-sheath and α-chitin-core nanowhiskers (CsNWs) have been successfully generated by surface deacetylation of chitin nanowhiskers (CtNWs) in the never-dried state. Acid hydrolysis (3N HCl, 30 mL/g, 104°C) of pure chitin derived from crab shell yielded 65% 4-10nm thick, 16 nm wide and 214 nm long chitin whiskers (CtNWs) that were 86% crystalline and 81% acetylated. Surface deacetylation of CtNWs was robust in their never-dried state in 50% NaOH at a moderate 50°C for 6h, yielding 92% CsNWs.

View Article and Find Full Text PDF

Curcumin (CUR) has been proved to be highly cytotoxic against different tumor cell lines. However, its poor solubility in aqueous medium and fast degradation in physiological pH are the common drawbacks preventing its efficient practical use. Herein, we report the development of original microspheres based on the biopolymer starch crosslinked with N,N-methylenebisacrylamide (MBA) to be applied as an efficient delivering system for CUR.

View Article and Find Full Text PDF

This work deals with the preparation of chitosan/tripolyphosphate microparticles (CHT/TPP) using microemulsion system based on water/benzyl alcohol. The morphology of the microparticles was evaluated by scanning electron microscopy (SEM). The microparticles were also characterized through infrared spectroscopy (FTIR) and wide-angle X-ray scattering (WAXS).

View Article and Find Full Text PDF

The preparation and characterization of natural polymer-based hydrogels that contain 50-nm diameter magnetite (i.e., FeO:Fe(2)O(3)) nanoparticles are described herein.

View Article and Find Full Text PDF