Publications by authors named "Antonio G B Lima"

With the growing human awareness of trying to reduce the environmental impact in today's world, the development of new sustainably based materials has been the increasing focus of industry and academia. Biocomposites are environmentally friendly materials produced from raw materials synthesized from renewable sources. In this sense, this work aims to characterize and evaluate the mechanical and thermal performances of biocomposites manufactured from a thermoplastic matrix of high-density bioethylene and obtained from ethanol produced from sugarcane and reinforced with organophilic montmorillonite clay.

View Article and Find Full Text PDF

The current article elucidates a study centered on the development of an anemometer leveraging an inertial sensor for wind speed measurement in the northeast region of Brazil, focusing on renewable energy generation. The study encompassed a series of experiments aimed at calibrating the anemometer, analyzing the noise generated by the inertial sensor, and scrutinizing the data acquired during wind speed measurement. The calibration process unfolded in three stages: initial noise analysis, subsequent inertial data analysis, and the derivation of calibration curves.

View Article and Find Full Text PDF

A conventional hydrocyclones is a versatile equipment with a high processing capacity and low maintenance cost. Currently, several studies aim to alter the typical structure of the conventional hydrocyclone in order to modify its performance and purpose. For this, filtering hydrocyclones have emerged, where a porous membrane replaces the conic or cylindrical wall.

View Article and Find Full Text PDF

SMA actuators are a group of lightweight actuators that offer advantages over conventional technology and allow for simple and compact solutions to the increasing demand for electrical actuation. In particular, an increasing number of SMA torsional actuator applications have been published recently due to their ability to supply rotational motion under load, resulting in advantages such as module simplification and the reduction of overall product weight. This paper presents the conceptual design, operating principle, experimental characterization and working performance of torsional actuators applicable in active rudder in aeronautics.

View Article and Find Full Text PDF

The aim of this work is to analyze the effect of water absorption on the mechanical properties and damage mechanisms of polyester/glass fiber/jute fiber hybrid composites obtained using the compression molding and vacuum-assisted resin transfer molding (VARTM) techniques with different stacking sequences. For this purpose, the mechanical behavior under tensile stress of the samples was evaluated before and after hygrothermal aging at different temperatures: TA, 50 °C, and 70 °C for a period of 696 h. The damage mechanism after the mechanical tests was evaluated using SEM analysis.

View Article and Find Full Text PDF

The aim of this work is to analyze water sorption in hybrid polyester/glass fabric/jute fabric composites molded via compression and VARTM (Vacuum-Assisted Resin Transfer Molding). The laminates were produced with five different stacking sequences and subjected to water sorption testing at room temperature, 50 °C and 70 °C. This study consisted of two stages: experimental and theoretical stages.

View Article and Find Full Text PDF

Guava, pitanga and acerola are known for their vitamin content and high levels of bioactive compounds. Thus, the preparation of combinations of these fruits comprises a blend with high nutraceutical potential, yielding a strong and attractive pigmentation material. In this study, the influence of different proportions of maltodextrin on the lyophilization of a blend of guava, acerola and pitanga was evaluated considering not only the physicochemical, physical and colorimetric parameters but also the bioactive compounds in the obtained powders.

View Article and Find Full Text PDF

Foam mat drying is a widely used technique for liquid products because it has a number of advantages; however, for an efficient process, the choice of additives and temperatures is extremely important. The objective of this study was to evaluate the effect of additives and drying temperatures on the powders obtained from the blend of tropical red fruits, such as acerola, guava, and pitanga. The foam formulations were prepared by mixing the pulps of the three fruits in equal proportions (1:1:1), all added with 6% albumin and 1% stabilizing agent: E1, gum Arabic; E2, guar gum; E3, gelatin.

View Article and Find Full Text PDF

The combination of fruit pulps from different species, in addition to multiplying the offer of flavors, aromas and textures, favors the nutritional spectrum and the diversity of bioactive principles. The objective was to evaluate and compare the physicochemical characteristics, bioactive compounds, profile of phenolic compounds and in vitro antioxidant activity of pulps of three species of tropical red fruits (acerola, guava and pitanga) and of the blend produced from the combination. The pulps showed significant values of bioactive compounds, with emphasis on acerola, which had the highest levels in all parameters, except for lycopene, with the highest content in pitanga pulp.

View Article and Find Full Text PDF

Pepper ( spp.) is among the oldest and most cultivated crops on the planet. Its fruits are widely used as natural condiments in the food industry for their color, flavor, and pungency properties.

View Article and Find Full Text PDF

The aim of this study was to determine the thermophysical properties and process parameters of cylindrical carrot pieces during their chilling. For this, the temperature of the central point of the product, initially at 19.9 °C, was recorded during chilling under natural convection, with the refrigerator air temperature maintained at 3.

View Article and Find Full Text PDF

Among the vegetables that stand out for their high concentration of anthocyanins, red cabbage appears as one of the most-used sources of these pigments in food production and it is considered a suitable raw material for the extraction of natural dye. Therefore, the objective was to carry out the production of natural extracts from red cabbage, under different conditions, varying the solvent, type of pre-treatment, pH range, and processing temperature during the concentration of the extracts. The anthocyanins were extracted from red cabbage using the following solvents: distilled water, 25% ethyl alcohol, and 70% ethyl alcohol.

View Article and Find Full Text PDF

For the purpose of renewable materials applications, Curauá fiber treated with 5% sodium hydroxide was added to high-density biopolyethylene, using an entirely Brazilian raw material of sugarcane ethanol. Polyethylene grafted with maleic anhydride was used as a compatibilizer. With the addition of curauá fiber, the crystallinity was reduced, possibly due to interactions in the crystalline matrix.

View Article and Find Full Text PDF

Pomegranate is a fruit desirable for its nutritional and medicinal properties which has a great industrial potential that is yet under-explored. Notable for its integral use, the peels are used in medicinal infusions and the seeds consumed without restrictions. In this sense, the objective of this work is to determine the drying kinetics of pomegranate peels and seeds in a hot air circulation oven, at temperatures of 50, 60, and 70 °C, adjust mathematical models to experimental data, determine the effective diffusivities and thermodynamic properties of the process and the physicochemical characteristics of peels and seeds of fresh pomegranates and in their flours.

View Article and Find Full Text PDF

Shape memory alloy (SMA) micro cables have a wide potential for attenuation of vibrations and structural health monitoring due to energy dissipation. This work evaluates the effect of SMA thermomechanical coupling during dynamic cycling and the fatigue life of NiTi SMA micro cables submitted to tensile loadings at frequencies from 0.25 Hz to 10 Hz.

View Article and Find Full Text PDF

Due to the increase in the number of people affected by chronic renal failure, the demand for hemodialysis treatment has increased considerably over the years. In this sense, theoretical and experimental studies to improve the equipment (hemodialyzer) are extremely important, due to their potential impact on the patient's life quality undergoing treatment. To contribute to this research line, this work aims to study the fluid behavior inside a hollow fiber dialyzer using computational fluid dynamics.

View Article and Find Full Text PDF

This work presents an experimental study related to the mechanical performance of a special design spring fabricated with a superelastic shape memory alloy (SMA-SE). For the experimental testing, the spring was coupled in a rotor machine, aiming to attenuate the mechanical vibration when the system went through a natural frequency without any external power source. It was verified that the reduction in instabilities stemmed from the better distribution of vibration force in the proposed device, as well as the damping capacity of the spring material.

View Article and Find Full Text PDF

In this work, recycled poly(ethylene terephthalate) (PETR) was blended with virgin high-density polyethylene (HDPE) in an internal mixer in an attempt to obtain a material with improved properties. A compatibilizer (PE-g-MA) and a chain extender (Joncryl) were added to the PETR/HDPE blend and the rheological and thermal properties of the modified and unmodified blends as well as those of virgin PET with virgin HDPE (PETV/HDPE). All the blends were characterized by torque rheometry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

The mechanical loading frequency affects the functional properties of shape memory alloys (SMA). Thus, it is crucial to study its effect for the successful use of these materials in dynamic applications. Based on the superelastic cyclic behavior, this work presents an experimental methodology for the determination of the critical frequency of the self-heating of a NiTi Belleville conical spring.

View Article and Find Full Text PDF

The residue generated from the processing of (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue.

View Article and Find Full Text PDF

This article aims to study the non-Fickian water absorption process in vegetable fiber-reinforced polymer composite using the Langmuir-type model, evaluating the influence of mass diffusivity on the process. The numerical solutions of the governing equations were obtained using the finite-volume method. Transient results of the local and average moisture content, free and entrapped water molecules concentration considering the constant diffusivity and as a function of the average and local moisture content were presented and analyzed.

View Article and Find Full Text PDF

Wastewater from the oil industry can be considered a dangerous contaminant for the environment and needs to be treated before disposal or re-use. Currently, membrane separation is one of the most used technologies for the treatment of produced water. Therefore, the present work aims to study the process of separating oily water in a module equipped with a ceramic membrane, based on the Eulerian-Eulerian approach and the Shear-Stress Transport (SST k-ω) turbulence model, using the Ansys Fluent 15.

View Article and Find Full Text PDF

This research aims to study the process of separating water contaminated with oil using a hydrocyclone with a porous wall (membrane), containing two tangential inlets and two concentric outlets (concentrate and permeate), at the base of the equipment. For the study, the computational fluid dynamics technique was used in a Eulerian-Eulerian approach to solve the mass and linear momentum conservation equations and the turbulence model. The effects of the concentration polarization layer thickness and membrane rejection coefficient on the permeate flow, hydrodynamic behavior of the fluids inside the hydrocyclone, and equipment performance were evaluated.

View Article and Find Full Text PDF

It is well known that intake of probiotic brings health benefits. Lactic bacteria with probiotic potential have aroused the interest of the industry in developing food products that incorporate such benefits. However, incorporating probiotic bacteria into food is a challenge for the industry, given the sensitivity of probiotic cultures to process conditions.

View Article and Find Full Text PDF

One approach to improve sustainable agro-industrial fruit production is to add value to the waste generated in pulp extraction. The processing of cumbeba () fruits generates a significant amount of waste, which is discarded without further application but can be a source of bioactive compounds, among other nutrients. Among the simplest and most inexpensive forms of processing, convective drying appears as the first option for the commercial utilization of fruit derivatives, but it is essential to understand the properties of mass transfer for the appropriate choice of drying conditions.

View Article and Find Full Text PDF