Publications by authors named "Antonio Figueras"

Introduction: Furunculosis, caused by the gram-negative bacterium subsp. , remains a significant threat to turbot () aquaculture. Identifying genetic backgrounds with enhanced disease resistance is critical for improving aquaculture health management, reducing antibiotic dependency, and mitigating economic losses.

View Article and Find Full Text PDF

One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs).

View Article and Find Full Text PDF

The study of mussels (Mytilus galloprovincialis) has grown in importance in recent years due to their high economic value and resistance to pathogens. Because of the biological characteristics revealed by mussel genome sequencing, this species is a valuable research model. The high genomic variability and diversity, particularly in immune genes, may be responsible for their resistance to pathogens found in seawater and continuously filtered and internalized by them.

View Article and Find Full Text PDF

Marine microalgae are a rich reservoir of natural compounds, including bioactives. Nonetheless, these organisms remain fairly unexplored despite their potential biotechnological applications. Culture collections with diverse taxonomic groups and lifestyles are a good source to unlock this potential and discover new molecules for multiple applications such as the treatment of human pathologies or the production of aquaculture species.

View Article and Find Full Text PDF

Aeromonas salmonicida is one of the most harmful pathogens in finfish aquaculture worldwide. Immunostimulants such as β-glucans are used to enhance the immunity of cultured fish. However, their effects on fish physiology are not completely understood.

View Article and Find Full Text PDF

An archetypal anti-inflammatory compound against cytokine storm would inhibit it without suppressing the innate immune response. AG5, an anti-inflammatory compound, has been developed as synthetic derivative of andrographolide, which is highly absorbable and presents low toxicity. We found that the mechanism of action of AG5 is through the inhibition of caspase-1.

View Article and Find Full Text PDF
Article Synopsis
  • Presence/Absence Variation (PAV) was first identified in bivalves in 2020, and this study aimed to deepen understanding of its role in mussel biology.* -
  • Research on a mussel genome assembly indicated that PAV is widely distributed, with certain regions showing a higher occurrence of genes that can be absent in some individuals.* -
  • The findings suggest that PAV impacts gene expression and local adaptation, as differences in dispensable genes were noted between two distinct populations, highlighting its potential advantage for population survival.*
View Article and Find Full Text PDF
Article Synopsis
  • Toll-like receptors (TLRs) are crucial components of the innate immune system, with a significant role in pathogen recognition and immune response activation across various animal species, particularly in mollusks.
  • Research indicates that bivalve mollusks, especially marine mussels (Mytilus spp.), possess the largest and most diverse TLR gene repertoire in the animal kingdom, reflecting unique evolutionary adaptations.
  • The study highlights the functional specialization of TLRs in bivalves, showing their modulation in response to environmental factors and suggesting an evolutionary trend toward diversification and specialization in immune functions among these organisms.
View Article and Find Full Text PDF
Article Synopsis
  • The blue mussel is a vital species for the economy of southern Chile, especially in aquaculture, where its growth and survival are challenged by environmental factors and pathogens.
  • A high-quality reference genome was created, marking the first chromosome-level genome for a Mytilidae species in South America, with a genome size of 1.93 Gb and 34,530 genes identified.
  • The study underscores the importance of understanding genetic adaptations and variations among mussel populations to enhance sustainable production practices in aquaculture.
View Article and Find Full Text PDF

C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods.

View Article and Find Full Text PDF

As filter-feeding bivalves, mussels have been traditionally studied as possible vectors of different bacterial or viral pathogens. The absence of a known viral pathogen in these bivalves makes it particularly interesting to study the interaction of the mussel innate immune system with a virus of interest. In the present work, mussels were challenged with viral haemorrhagic septicaemia virus (VHSV), which is a pathogen in several fish species.

View Article and Find Full Text PDF

Gilthead sea bream (Sparus aurata) is considered an asymptomatic carrier for the nodavirus genotype affecting European sea bass (Dicentrarchus labrax), RGNNV. Only larvae and juveniles of sea bream have been found to be susceptible to the RGNNV/SJNNV reassortant. Nevertheless, the molecular bases of the high resistance of sea bream against RGNNV are not known, and the overall transcriptome response to the virus remains unexplored.

View Article and Find Full Text PDF

In this work, we analysed the transcriptome and metatranscriptome profiles of zebrafish exposed to an environmental concentration of the two antibiotics most frequently detected in European inland surface water, sulfamethoxazole (SMX) and clarithromycin (CLA). We found that those animals exposed to antibiotics (SMX+CLA) for two weeks showed a higher bacterial load in both the intestine and kidney; however, significant differences in the relative abundance of certain bacterial classes were found only in the intestine, which also showed an altered fungal profile. RNA-Seq analysis revealed that the complement/coagulation system is likely the most altered immune mechanism, although not the only one, in the intestine of fish exposed to antibiotics, with numerous genes inhibited compared to the control fish.

View Article and Find Full Text PDF

Bisphenol A (BPA) is one of the most widely used and versatile chemical compounds in polymer additives and epoxy resins for manufacturing a range of products for human applications. It is known as endocrine disruptor, however, there is growing evidence that it is genotoxic. Because of its adverse effects, the European Union has restricted its use to protect human health and the environment.

View Article and Find Full Text PDF

Metatranscriptomics has emerged as a very useful technology for the study of microbiomes from RNA-seq reads. This method provides additional information compared to the sequencing of ribosomal genes because the gene expression can also be analysed. In this work, we used the metatranscriptomic approach to study the whole microbiome of mussels, including bacteria, viruses, fungi, and protozoans, by mapping the RNA-seq reads to custom assembly databases (including the genomes of microorganisms publicly available).

View Article and Find Full Text PDF

In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively.

View Article and Find Full Text PDF

Polylactic acid (PLA) has become one of the most commonly used polymers in medical devices given its biocompatible, biodegradable and bioabsorbable properties. In addition, due to PLA's thermoplastic behaviour, these medical devices are now obtained using 3D printing technologies. Once obtained, the 3D-printed PLA devices undergo different sterilisation procedures, which are essential to prevent infections.

View Article and Find Full Text PDF

Shellfish farming is a relevant economic activity in Chile, where the inner sea in Chiloé island concentrates 99% of the production of the mussel . This area is characterized by the presence of numerous human activities, which could harm the quality of seawater. Additionally, the presence of potentially pathogenic microorganisms can influence the health status of mussels, which must be constantly monitored.

View Article and Find Full Text PDF

This study presents the results of SARS-CoV-2 surveillance in sewage water of 11 municipalities and marine bioindicators in Galicia (NW of Spain) from May 2020 to May 2021. An integrated pipeline was developed including sampling, pre-treatment and biomarker quantification, RNA detection, SARS-CoV-2 sequencing, mechanistic mathematical modeling and forecasting. The viral load in the inlet stream to the wastewater treatment plants (WWTP) was used to detect new outbreaks of COVID-19, and the data of viral load in the wastewater in combination with data provided by the health system was used to predict the evolution of the pandemic in the municipalities under study within a time horizon of 7 days.

View Article and Find Full Text PDF

Nervous necrosis virus (NNV) is a neurotropic pathogenic virus affecting a multitude of marine and freshwater fish species that has a high economic impact on aquaculture farms worldwide. Therefore, the development of new tools and strategies aimed at reducing the mortality caused by this virus is a pivotal need. Although zebrafish is not considered a natural host for NNV, the numerous experimental advantages of this species make zebrafish an attractive model for studying different aspects of the disease caused by NNV, viral encephalopathy and retinopathy (VER).

View Article and Find Full Text PDF

Surgical face masks are the most popularised and effective personal equipment for protecting public health during the COVID-19 pandemic. They are composed of plastic polymer fibres with a large amount of inorganic and organic compounds that can be released into aquatic environments through degradation processes. This source of microplastics and inorganic and organic substances could potentially impact aquatic organisms.

View Article and Find Full Text PDF

The marine environment includes diverse microeukaryotic organisms that play important functional roles in the ecosystem. With molecular approaches, eukaryotic taxonomy has been improved, complementing classical analysis. In this study, DNA metabarcoding was performed to describe putative pathogenic eukaryotic microorganisms in sediment and marine water fractions collected in Galicia (NW Spain) from 2016 to 2018.

View Article and Find Full Text PDF

Cathepsins are lysosomal enzymes that participate in important physiological processes, such as development, tissue remodelling, senescence and innate and adaptive immunity. The description of these proteins in molluscs is fragmented and incomplete. In the present work, we identified most of the cathepsin family members in the bivalve Mytilus galloprovincialis by screening published genomic and transcriptomic information.

View Article and Find Full Text PDF

The Mediterranean mussel is one of the most economically relevant bivalve mollusk species in Europe and China. The absence of massive mortalities and their resistance to pathogens affecting other cultured bivalves has been under study in recent years. The transcriptome response of this species to different immune stimuli has been extensively studied, and even the complexity of its genome, which has recently been sequenced, has been suggested as one of the factors contributing to this resistance.

View Article and Find Full Text PDF