Publications by authors named "Antonio Fernandez Guerra"

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions.

View Article and Find Full Text PDF
Article Synopsis
  • Research in marine microbial communities is expanding, but inconsistencies in seawater sampling methods make comparisons difficult among studies.
  • The EuroMarine Open Science Exploration initiative (EMOSE) was developed to standardize research by sampling seawater from a single location in the NW Mediterranean Sea, testing various processing approaches.
  • Findings indicate that while the volume of seawater filtered doesn't significantly impact microbial diversity, differences exist based on size fractions and filter types; thus, merging data from studies with differing methodologies should be approached with caution.
View Article and Find Full Text PDF

A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors.

View Article and Find Full Text PDF

DNA viruses have a major influence on the ecology and evolution of cellular organisms, but their overall diversity and evolutionary trajectories remain elusive. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales.

View Article and Find Full Text PDF

Marine planktonic eukaryotes play critical roles in global biogeochemical cycles and climate. However, their poor representation in culture collections limits our understanding of the evolutionary history and genomic underpinnings of planktonic ecosystems. Here, we used 280 billion Oceans metagenomic reads from polar, temperate, and tropical sunlit oceans to reconstruct and manually curate more than 700 abundant and widespread eukaryotic environmental genomes ranging from 10 Mbp to 1.

View Article and Find Full Text PDF

Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago had climates resembling those forecasted under future warming.

View Article and Find Full Text PDF

The biotic crisis following the end-Cretaceous asteroid impact resulted in a dramatic renewal of pelagic biodiversity. Considering the severe and immediate effect of the asteroid impact on the pelagic environment, it is remarkable that some of the most affected pelagic groups, like the planktonic foraminifera, survived at all. Here we queried a surface ocean metabarcoding dataset to show that calcareous benthic foraminifera of the clade Globothalamea are able to disperse actively in the plankton, and we show using molecular clock phylogeny that the modern planktonic clades originated from different benthic ancestors that colonized the plankton after the end-Cretaceous crisis.

View Article and Find Full Text PDF

Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity.

View Article and Find Full Text PDF

Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes.

View Article and Find Full Text PDF

Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are mega enzymes responsible for the biosynthesis of a large fraction of natural products (NPs). Molecular markers for biosynthetic genes, such as the ketosynthase (KS) domain of PKSs, have been used to assess the diversity and distribution of biosynthetic genes in complex microbial communities. More recently, metagenomic studies have complemented and enhanced this approach by allowing the recovery of complete biosynthetic gene clusters (BGCs) from environmental DNA.

View Article and Find Full Text PDF

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences.

View Article and Find Full Text PDF

Ancient DNA and RNA are valuable data sources for a wide range of disciplines. Within the field of ancient metagenomics, the number of published genetic datasets has risen dramatically in recent years, and tracking this data for reuse is particularly important for large-scale ecological and evolutionary studies of individual taxa and communities of both microbes and eukaryotes. AncientMetagenomeDir (archived at https://doi.

View Article and Find Full Text PDF

Big data abound in microbiology, but the workflows designed to enable researchers to interpret data can constrain the biological questions that can be asked. Five years after anvi’o was first published, this community-led multi-omics platform is maturing into an open software ecosystem that reduces constraints in ‘omics data analyses.

View Article and Find Full Text PDF

Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae.

View Article and Find Full Text PDF

Background: Microbial source tracking methods are used to determine the origin of contaminating bacteria and other microorganisms, particularly in contaminated water systems. The Bayesian SourceTracker approach uses deep-sequencing marker gene libraries (16S ribosomal RNA) to determine the proportional contributions of bacteria from many potential source environments to a given sink environment simultaneously. Since its development, SourceTracker has been applied to an extensive diversity of studies, from beach contamination to human behavior.

View Article and Find Full Text PDF

Genome mining has become a key technology to exploit natural product diversity. Although initially performed on a single-genome basis, the process is now being scaled up to mine entire genera, strain collections and microbiomes. However, no bioinformatic framework is currently available for effectively analyzing datasets of this size and complexity.

View Article and Find Full Text PDF

Background: Metagenomics caused a quantum leap in microbial ecology. However, the inherent size and complexity of metagenomic data limit its interpretation. The quantification of metagenomic traits in metagenomic analysis workflows has the potential to improve the exploitation of metagenomic data.

View Article and Find Full Text PDF
Article Synopsis
  • A global census of marine microbial life has revealed remarkable diversity and ecological roles in oceans, home to an estimated 2 million species of eukaryotic and prokaryotic microbes.
  • Prokaryotic microbes are present in much higher densities than eukaryotes, which may have significant implications for their roles in industrial processes and product development.
  • The article highlights knowledge gaps and technological needs to enhance our understanding and utilization of these marine microbes, referencing advancements from the European Horizon 2020 project 'INMARE'.
View Article and Find Full Text PDF

Marine bacteria catabolize carbohydrate polymers of algae, which synthesize these structurally diverse molecules in ocean surface waters. Although algal glycans are an abundant carbon and energy source in the ocean, the molecular details that enable specific recognition between algal glycans and bacterial degraders remain largely unknown. Here we characterized a surface protein, GMSusD from the planktonic Bacteroidetes-Gramella sp.

View Article and Find Full Text PDF

The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean.

View Article and Find Full Text PDF

Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function.

View Article and Find Full Text PDF

Temperate coastal marine environments are replete with complex biotic and abiotic interactions that are amplified during spring and summer phytoplankton blooms. During these events, heterotrophic bacterioplankton respond to successional releases of dissolved organic matter as algal cells are lysed. Annual seasonal shifts in the community composition of free-living bacterioplankton follow broadly predictable patterns, but whether similar communities respond each year to bloom disturbance events remains unknown owing to a lack of data sets, employing high-frequency sampling over multiple years.

View Article and Find Full Text PDF