Publications by authors named "Antonio Facciuolo"

Mycobacterium avium subsp. paratuberculosis (MAP) primarily invades ruminants' small intestine via the Peyer's patches in the ileum and jejunum. Despite ongoing efforts to develop effective MAP vaccines, the effects of live-attenuated vaccines on mucosal immunity remain poorly understood.

View Article and Find Full Text PDF

Johne's disease (JD; paratuberculosis) control programs have been regionally implemented across the globe, but few have successfully eradicated the pathogen (Mycobacterium avium ssp. paratuberculosis (MAP)) causing this disease. The limited success may partly be attributed to excluding young stock (calves and replacement heifers or bulls) from testing strategies aimed at identifying MAP-infected cattle.

View Article and Find Full Text PDF

Post-acute sequelae of COVID-19 (PASC) or the continuation of COVID-19 (Coronavirus disease 2019) symptoms past 12 weeks may affect as many as 30% of people recovering from a SARS-CoV-2 (severe acute respiratory coronavirus 2) infection. The mechanisms regulating the development of PASC are currently not known; however, hypotheses include virus reservoirs, pre-existing conditions, microblood clots, immune dysregulation, as well as poor antibody responses. Importantly, virus neutralizing antibodies are essential for COVID-19 recovery and protection from reinfection but there is currently limited information on these immune regulators and associated cytokines in PASC patients.

View Article and Find Full Text PDF

subsp. (MAP), the etiological agent of Johne's disease (JD) in ruminants, establishes a prolonged and often lifelong enteric infection. The implementation of control measures for bovine JD has faced obstacles due to the considerable expenses involved in disease surveillance and hindered by unreliable and inadequate diagnostic tests, emphasizing the need for an effective vaccine that can stimulate mucosal immunity in the gastrointestinal tract.

View Article and Find Full Text PDF

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing COVID-19 (coronavirus disease 2019) poses a greater health risk to immunocompromized individuals including people living with HIV (PLWH). However, most studies on PLWH have been conducted in higher-income countries. We investigated the post-vaccination antibody responses of PLWH in Rwanda by collecting peripheral blood from participants after receiving a second or third COVID-19 vaccine.

View Article and Find Full Text PDF

The ongoing evolution of SARS-CoV-2 continues to raise new questions regarding the duration of immunity to reinfection with emerging variants. To address these knowledge gaps, controlled investigations in established animal models are needed to assess duration of immunity induced by each SARS-CoV-2 lineage and precisely evaluate the extent of cross-reactivity and cross-protection afforded. Using the Syrian hamster model, we specifically investigated duration of infection acquired immunity to SARS-CoV-2 ancestral Wuhan strain over 12 months.

View Article and Find Full Text PDF

Failure to mount an effective immune response to vaccination leaves individuals at risk for infection and can compromise herd immunity. Vaccine unresponsiveness can range from poor responses "low responders" to a failure to seroconvert "non-responders." Biomarkers of vaccine unresponsiveness, particularly those measured at the time of vaccination, could facilitate more strategic vaccination programs.

View Article and Find Full Text PDF

Individual variability in responses to vaccination can result in vaccinated subjects failing to develop a protective immune response. Vaccine non-responders can remain susceptible to infection and may compromise efforts to achieve herd immunity. Biomarkers of vaccine unresponsiveness could aid vaccine research and development as well as strategically improve vaccine administration programs.

View Article and Find Full Text PDF

Long-term antibody responses to SARS-CoV-2 have focused on responses to full-length spike protein, specific domains within spike, or nucleoprotein. In this study, we used high-density peptide microarrays representing the complete proteome of SARS-CoV-2 to identify binding sites (epitopes) targeted by antibodies present in the blood of COVID-19 resolved cases at 5 months post-diagnosis. Compared to previous studies that evaluated epitope-specific responses early post-diagnosis (< 60 days), we found that epitope-specific responses to nucleoprotein and spike protein have contracted, and that responses to membrane protein have expanded.

View Article and Find Full Text PDF

subsp. (MAP) is the causative infectious agent of Johne's disease (JD), an incurable granulomatous enteritis affecting domestic livestock and other ruminants around the world. Chronic MAP infections usually begin in calves with MAP uptake by Peyer's patches (PP) located in the jejunum (JE) and ileum (IL).

View Article and Find Full Text PDF

Peptide microarrays consisting of defined phosphorylation target sites are an effective approach for high throughput analysis of cellular kinase (kinome) activity. Kinome peptide arrays are highly customizable and do not require species-specific reagents to measure kinase activity, making them amenable for kinome analysis in any species. Our group developed software, Platform for Integrated, Intelligent Kinome Analysis (PIIKA), to enable more effective extraction of meaningful biological information from kinome peptide array data.

View Article and Find Full Text PDF

Antibodies are critical effector molecules of the humoral immune system. Upon infection or vaccination, populations of antibodies are generated which bind to various regions of the invading pathogen or exogenous agent. Defining the reactivity and breadth of this antibody response provides an understanding of the antigenic determinants and enables the rational development and assessment of vaccine candidates.

View Article and Find Full Text PDF

Mycobacterial diseases of cattle are responsible for considerable production losses worldwide. In addition to their importance in animals, these infections offer a nuanced approach to understanding persistent mycobacterial infection in native host species. ssp.

View Article and Find Full Text PDF

Inter-individual variance in host immune responses following vaccination can result in failure to develop protective immunity leaving individuals at risk for infection in addition to compromising herd immunity. While developing more efficacious vaccines is one strategy to mitigate this problem, predicting vaccine responsiveness prior to vaccination could inform which individuals require adjunct disease management strategies. To identify biomarkers of vaccine responsiveness, a cohort of pigs (n = 120) were vaccinated and pigs representing the high (n = 6; 90th percentile) and low (n = 6; 10th percentile) responders based on vaccine-specific antibody responses following vaccination were further analyzed.

View Article and Find Full Text PDF

Chronic enteric ssp. (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood.

View Article and Find Full Text PDF

Within human health research, the remarkable utility of kinase inhibitors as therapeutics has motivated efforts to understand biology at the level of global cellular kinase activity (the kinome). In contrast, the diminished potential for using kinase inhibitors in food animals has dampened efforts to translate this research approach to livestock species. This, in our opinion, was a lost opportunity for livestock researchers given the unique potential of kinome analysis to offer insight into complex biology.

View Article and Find Full Text PDF

Johne's disease is a chronic gastroenteritis of cattle caused by Mycobacterium avium subsp. paratuberculosis that afflicts 40% of dairy herds worldwide. M.

View Article and Find Full Text PDF