Molybdenum disulfide is an emerging 2D material with several potential applications in medicine. Therefore, it is crucial to ascertain its biocompatibility. Mast cells are immune cells that are found in many organs and tissues in contact with the extracellular environment, and can be cultured from progenitor cells present in the bone marrow.
View Article and Find Full Text PDFMicroglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms.
View Article and Find Full Text PDFBoron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice.
View Article and Find Full Text PDFImproving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality few-layer graphene flakes (GFs), industrially produced through wet-jet milling exfoliation of graphite, into phenyl-C61-butyric acid methyl ester (PCBM).
View Article and Find Full Text PDFThe integration of 2D materials in triboelectric nanogenerators (TENGs) is known to increase the mechanical-to-electrical power conversion efficiency. 2D materials are used in TENGs with multiple roles as triboelectric material, charge-trapping fillers, or as electrodes. Here, novel TENGs based on few-layers graphene (FLG) electrodes and stable gel electrolytes composed of liquid phase exfoliated 2D-transition metal dichalcogenides and polyvinyl alcohol are developed.
View Article and Find Full Text PDFMoS has been increasingly used in place of graphene as a flexible and multifunctional 2D material in many biomedical applications such as cancer detection and drug delivery, which makes it crucial to evaluate downstream compatibility in human immune cells. Molybdenum is a component of stainless-steel stent implants and has previously been implicated in stent hypersensitivity. In view of this, it is important to ascertain the effect of MoS on allergy-relevant cells.
View Article and Find Full Text PDFLithium-sulfur battery of practical interest requires thin-layer support to achieve acceptable volumetric energy density. However, the typical aluminum current collector of Li-ion battery cannot be efficiently used in the Li/S system due to the insulating nature of sulfur and a reaction mechanism involving electrodeposition of dissolved polysulfides. We study the electrochemical behavior of a Li/S battery using a carbon-coated Al current collector in which the low thickness, the high electronic conductivity, and, at the same time, the host ability for the reaction products are allowed by a binder-free few-layer graphene (FLG) substrate.
View Article and Find Full Text PDFThe printing of three-dimensional (3D) porous electrodes for Li-ion batteries is considered a key driver for the design and realization of advanced energy storage systems. While different 3D printing techniques offer great potential to design and develop 3D architectures, several factors need to be addressed to print 3D electrodes, maintaining an optimal trade-off between electrochemical and mechanical performances. Herein, we report the first demonstration of 3D printed Si-based electrodes fabricated using a simple and cost-effective fused deposition modelling (FDM) method, and implemented as anodes in Li-ion batteries.
View Article and Find Full Text PDFGraphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb pattern and its unique and amazing properties make it suitable for a wide range of applications ranging from electronic devices to food packaging. However, the biocompatibility of graphene is dependent on the complex interplay of its several physical and chemical properties. The main aim of the present study is to highlight the importance of integrating different characterization techniques to describe the potential release of airborne graphene flakes in a graphene processing and production research laboratory.
View Article and Find Full Text PDFMultifunctional polymer composites with anisotropic properties are attracting interest as they fulfil the growing demand of multitasking materials. In this work, anisotropic polymer composites have been fabricated by combining the layer-by-layer (LBL) filtration method with the alternative assembling of carbon nanotubes (CNTs) and hexagonal boron nitride flakes (hBN) on natural rubber latex particles (NR). The layered composites exhibit anisotropic thermal and electrical conductivities, which are tailored through the layer formulations.
View Article and Find Full Text PDFThe fabrication of electrochemical double-layer capacitors (EDLCs) with high areal capacitance relies on the use of elevated mass loadings of highly porous active materials. Herein, we demonstrate a high-throughput manufacturing of graphene/carbon nanotubes hybrid EDLCs. The wet-jet milling (WJM) method is exploited to exfoliate the graphite into single-few-layer graphene flakes (WJM-G) in industrial volumes (production rate ca.
View Article and Find Full Text PDFLithium-sulfur batteries are the most promising candidates for next-generation energy storage devices owing to their high theoretical specific capacity of 1675 mAh g and high theoretical energy density of approximately 3500 Wh kg . However, the lack of cathode active materials with appropriate electrical conductivities and stability coupled with an inexpensive and industrially compatible production process has so far hindered the development of practical devices. Here, a facile preparation pathway is reported for the production of a sulfur-carbon composite active material by drying a mixture of highly conductive few-layer graphene (FLG) flakes (produced by exploiting an innovative wet jet milling process with a yield of ≈100 % and production capability of ≈23.
View Article and Find Full Text PDFSingle- and few-layered InSe flakes are produced by the liquid-phase exfoliation of β-InSe single crystals in 2-propanol, obtaining stable dispersions with a concentration as high as 0.11 g L . Ultracentrifugation is used to tune the morphology, i.
View Article and Find Full Text PDFThe biotransformation and biological impact of few layer graphene (FLG) and graphene oxide (GO) are studied, following ingestion as exposure route. An in vitro digestion assay based on a standardized operating procedure (SOP) is exploited. The assay simulates the human ingestion of nanomaterials during their dynamic passage through the different environments of the gastrointestinal tract (salivary, gastric, intestinal).
View Article and Find Full Text PDFFluorescence based on quantum confinement is a property restricted to the nanoscopic range. The incorporation of nanoparticles in a three-dimensional polymeric network could afford macroscopic scaffolds that show nanoscopic properties. Moreover, if these scaffolds are based on strong bonds, the stability of the resulting materials can be preserved, thus enhancing their final applications.
View Article and Find Full Text PDFThe development of large-scale production methods of two-dimensional (2D) crystals, with on-demand control of the area and thickness, is mandatory to fulfill the potential applications of such materials for photovoltaics. Inverted bulk heterojunction (BHJ) organic solar cell (OSC), which exploits a polymer-fullerene binary blend as the active material, is one potentially important application area for 2D crystals. A large ongoing effort is indeed currently devoted to the introduction of 2D crystals in the binary blend to improve the charge transport properties.
View Article and Find Full Text PDFInterface engineering is performed by the addition of graphene and related 2 D materials (GRMs) into perovskite solar cells (PSCs), leading to improvements in the power conversion efficiency (PCE). By doping the mesoporous TiO layer with graphene flakes (mTiO +G), produced by liquid-phase exfoliation of pristine graphite, and by inserting graphene oxide (GO) as an interlayer between the perovskite and hole-transport layers, using a two-step deposition procedure in air, we achieved a PCE of 18.2 %.
View Article and Find Full Text PDFThe structural and compositional stabilities of two-dimensional (2D) Bi2Te3 and Bi2Se3 nanocrystals, produced by both colloidal synthesis and by liquid phase exfoliation, were studied by in situ transmission electron microscopy (TEM) during annealing at temperatures between 350 and 500 °C. The sublimation process induced by annealing is structurally and chemically anisotropic and takes place through the preferential dismantling of the prismatic {011̅0} type planes, and through the preferential sublimation of Te (or Se). The observed anisotropic sublimation is independent of the method of nanocrystal's synthesis, their morphology, or the presence of surfactant molecules on the nanocrystals surface.
View Article and Find Full Text PDFUnderstanding human health risk associated with the rapidly emerging graphene-based nanomaterials represents a great challenge because of the diversity of applications and the wide range of possible ways of exposure to this type of materials. Herein, the biodegradation of graphene oxide (GO) sheets is reported by using myeloperoxidase (hMPO) derived from human neutrophils in the presence of a low concentration of hydrogen peroxide. The degradation capability of the enzyme on three different GO samples containing different degree of oxidation on their graphenic lattice, leading to a variable dispersibility in aqueous media is compared.
View Article and Find Full Text PDFThe 'classical' loop diuretic drug Furosemide has been used as a model compound to investigate the possibility of enhancing the dissolution rate of poorly water-soluble drugs using supercritical anti-solvent techniques (SASs). In the present study we report upon the in vitro bioavailability improvement of Furosemide through particle size reduction as well as formation of solid dispersions (SDs) using the hydrophilic polymer Crospovidone. Supercritical carbon dioxide was used as the processing medium for these experiments.
View Article and Find Full Text PDFGraphene sheets have been functionalized with a PAMAM dendron, finding that graphene can be efficiently functionalized all over the surface, or only at the edges, depending on the reactions used in the functionalization process.
View Article and Find Full Text PDF