Publications by authors named "Antonio E Rusinol"

C-reactive protein (CRP) performs two recognition functions that are relevant to cardiovascular disease. First, in its native pentameric conformation, CRP recognizes molecules and cells with exposed phosphocholine (PCh) groups, such as microbial pathogens and damaged cells. PCh-containing ligand-bound CRP activates the complement system to destroy the ligand.

View Article and Find Full Text PDF

C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP.

View Article and Find Full Text PDF

C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites.

View Article and Find Full Text PDF

Background: The 5 subunits of native pentameric C-reactive protein (CRP) are dissociated to generate the monomeric form of CRP (mCRP) in some in vitro conditions, both physiological and non-physiological, and also in vivo. Many bioactivities of mCRP generated by urea-treatment of CRP and of mCRP generated by mutating the primary structure of CRP have been reported. The bioactivities of mCRP generated by spontaneous dissociation of CRP are largely unexplored.

View Article and Find Full Text PDF

Background: C-reactive protein (CRP) is an acute phase plasma protein. An important binding specificity of CRP is for the modified forms of low-density lipoprotein (LDL) in which the phosphocholine-binding sites of CRP participate. CRP, however, does not bind to native LDL.

View Article and Find Full Text PDF

The formation of low-density lipoprotein (LDL) cholesterol-loaded macrophage foam cells contributes to the development of atherosclerosis. C-reactive protein (CRP) binds to atherogenic forms of LDL, but the role of CRP in foam cell formation is unclear. In this study, we first explored the binding site on CRP for enzymatically modified LDL (E-LDL), a model of atherogenic LDL to which CRP binds.

View Article and Find Full Text PDF

Cellular accumulation of DNA damage has been widely implicated in cellular senescence, aging, and premature aging. In Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD), premature aging is linked to accumulation of DNA double-strand breaks (DSBs), which results in genome instability. However, how DSBs accumulate in cells despite the presence of intact DNA repair proteins remains unknown.

View Article and Find Full Text PDF

Mutations in the gene encoding nuclear lamin A (LA) cause the premature aging disease Hutchinson-Gilford Progeria Syndrome. The most common of these mutations results in the expression of a mutant LA, with a 50-aa deletion within its C terminus. In this study, we demonstrate that this deletion leads to a stable farnesylation and carboxymethylation of the mutant LA (LADelta50/progerin).

View Article and Find Full Text PDF

Three mammalian nuclear lamin proteins, lamin B(1), lamin B(2) and the lamin A precursor, prelamin A, undergo canonical farnesylation and processing at CAAX motifs. In the case of prelamin A, there is an additional farnesylation-dependent endoproteolysis, which is defective in two congenital diseases: Hutchinson-Gilford progeria (HGPS) and restrictive dermopathy (RD). These two diseases arise respectively from defects in the prelamin A substrate and the enzyme (ZmpSte24) that processes it.

View Article and Find Full Text PDF

Objective: HSPA12B is the newest member of HSP70 family of proteins and is enriched in atherosclerotic lesions. This study focused on HSPA12B expression in mice and its involvement in angiogenesis.

Methods And Results: The expression of HSPA12B in mice and cultured cells was studied by: (1) Northern blot; (2) in situ hybridization; (3) immunostaining with HSPA12B-specific antibodies; and (4) expressing Enhanced-Green-Fluorescent-Protein under the control of the HSPA12B promoter in mice.

View Article and Find Full Text PDF

7-Ketocholesterol (7KC) is a cytotoxic component of oxidized low density lipoproteins (OxLDLs) and induces apoptosis in macrophages by a mechanism involving the activation of cytosolic phospholipase A2 (cPLA2). In the current study, we examined the role of ACAT in 7KC-induced and OxLDL-induced apoptosis in murine macrophages. An ACAT inhibitor, Sandoz 58-035, suppressed 7KC-induced apoptosis in P388D1 cells and both 7KC-induced and OxLDL-induced apoptosis in mouse peritoneal macrophages (MPMs).

View Article and Find Full Text PDF

The nuclear lamins form a karyoskeleton providing structural rigidity to the nucleus. One member of the lamin family, lamin A, is first synthesized as a 74 kDa precursor, prelamin A. After the endopeptidase and methylation reactions which occur after farnesylation of the CAAX-box cysteine, there is a second endoproteolysis that occurs 15 amino acids upstream from the C-terminal farnesylated cysteine residue.

View Article and Find Full Text PDF

Cells of the vasculature, including macrophages, smooth muscle cells, and endothelial cells, exhibit apoptosis in culture upon treatment with oxidized low density lipoprotein, as do vascular cells of atherosclerotic plaque. Several lines of evidence support the hypothesis that the apoptotic component of oxidized low density lipoprotein is one or more oxysterols, which have been shown to induce apoptosis through the mitochondrial pathway. Activation of the mitochondrial pathway of apoptosis is regulated by members of the BCL family of proteins.

View Article and Find Full Text PDF