Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: cv. Icatu and cv.
View Article and Find Full Text PDFClimate changes with global warming associated with rising atmospheric [CO] can strongly impact crop performance, including coffee, which is one of the most world's traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO (eCO) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of cv.
View Article and Find Full Text PDFNowadays, there is a growing concern about micronutrient deficits in food products, with agronomic biofortification being considered a mitigation strategy. In this context, as Zn is essential for growth and maintenance of human health, a workflow for the biofortification of grapes from the variety Fernão Pires, which contains this nutrient, was carried out considering the soil properties of the vineyard. Additionally, Zn accumulation in the tissues of the grapes and the implications for some quality parameters and on winemaking were assessed.
View Article and Find Full Text PDFActinorhizal plants have been regarded as promising species in the current climate change context due to their high tolerance to a multitude of abiotic stresses. While combined salt-heat stress effects have been studied in crop species, their impact on the model actinorhizal plant, , has not yet been fully addressed. The effect of single salt (400 mM NaCl) and heat (control at 26/22 °C, supra optimal temperatures at 35/22 °C and 45/22 °C day/night) conditions on branchlets was characterised at the physiological level, and stress-induced metabolite changes were characterised by mass spectrometry-based metabolomics.
View Article and Find Full Text PDFClimate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO] and heat on coffee bean quality was never addressed.
View Article and Find Full Text PDFCalcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature.
View Article and Find Full Text PDFModeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv.
View Article and Find Full Text PDFThe tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L.
View Article and Find Full Text PDFCasuarina glauca is an actinorhizal tree which establishes root-nodule symbiosis with N2-fixing Frankia bacteria. This plant is commonly found in saline zones and is widely used to remediate marginal soils and prevent desertification. The nature of its ability to survive in extreme environments and the extent of Frankia contribution to stress tolerance remain unknown.
View Article and Find Full Text PDFUnderstanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle.
View Article and Find Full Text PDFCoffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C.
View Article and Find Full Text PDFRoasted coffee samples of the two major trade species (Coffea arabica and C. canephora) were studied to identify sensory descriptors that might be used to determine blends production and evaluation, following the expectations of consumers. Coffee beans were roasted at 220 + 10 °C, for 7, 9, and 11 min, and the sensory profiles of the beverages were assessed.
View Article and Find Full Text PDFTo attain chemical descriptors responsible for sensory characteristics linked to the botanical origin of five Brazilian coffee genotypes, a chemical survey was carried out. Highest and lowest amounts of caffeine were found in Apoatã and Obatã. Coffea dewevrei showed the lowest contents of 5-CQA and 3-CQA.
View Article and Find Full Text PDFLow positive temperature (chilling) is frequently linked to the promotion of oxidative stress conditions, and is of particular importance in the coffee plant due to its severe impact on growth, development, photosynthesis and production. Nevertheless, some acclimation ability has been reported within the Coffea genus, and is possibly related to oxidative stress control. Using an integrated biochemical and molecular approach, the characterization of the antioxidative system of genotypes with different cold acclimation abilities was performed.
View Article and Find Full Text PDF