Publications by authors named "Antonio Di Maria"

Motivation: The rapid increase of bio-medical literature makes it harder and harder for scientists to keep pace with the discoveries on which they build their studies. Therefore, computational tools have become more widespread, among which network analysis plays a crucial role in several life-science contexts. Nevertheless, building correct and complete networks about some user-defined biomedical topics on top of the available literature is still challenging.

View Article and Find Full Text PDF

Experimental evidence demonstrated that fluoro-edenite (FE) can develop chronic respiratory diseases and elicit carcinogenic effects. Environmental exposure to FE fibers is correlated with malignant pleural mesothelioma (MPM). An early diagnosis of MPM, and a comprehensive health monitoring of the patients exposed to FE fibers are two clinical issues that may be solved by the identification of specific biomarkers.

View Article and Find Full Text PDF

The inference of novel knowledge and new hypotheses from the current literature analysis is crucial in making new scientific discoveries. In bio-medicine, given the enormous amount of literature and knowledge bases available, the automatic gain of knowledge concerning relationships among biological elements, in the form of semantically related terms (or entities), is rising novel research challenges and corresponding applications. In this regard, we propose BioTAGME, a system that combines an entity-annotation framework based on Wikipedia corpus (i.

View Article and Find Full Text PDF

Background: The rapidly increasing biological literature is a key resource to automatically extract and gain knowledge concerning biological elements and their relations. Knowledge Networks are helpful tools in the context of biological knowledge discovery and modeling.

Results: We introduce a novel system called , which, starting from a set of full-texts obtained from , through an easy-to-use web interface, interactively extracts biological elements from ontological databases and then synthesizes a network inferring relations among such elements.

View Article and Find Full Text PDF

Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and, although its genetic background has been extensively studied, little is known about the contribution of non-coding RNAs (ncRNAs) to its pathogenesis. Indeed, its competitive endogenous RNA (ceRNA) regulatory network comprising microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and mRNAs has been insufficiently explored. Thanks to UM findings from The Cancer Genome Atlas (TCGA), it is now possible to statistically elaborate these data to identify the expression relationships among RNAs and correlative interaction data.

View Article and Find Full Text PDF

Background: Several large public repositories of microarray datasets and RNA-seq data are available. Two prominent examples include ArrayExpress and NCBI GEO. Unfortunately, there is no easy way to import and manipulate data from such resources, because the data is stored in large files, requiring large bandwidth to download and special purpose data manipulation tools to extract subsets relevant for the specific analysis.

View Article and Find Full Text PDF