Publications by authors named "Antonio Correcher"

Although the vibration of rackets and the location of the sweet spot for players when hitting the ball is crucial, manufacturers do not specify this behavior precisely. This article analyses padel rackets, provides a solution to determine the sweet spot position (SSP), quantifies its behavior, and determines the level of vibration transmitted along the racket handle. The proposed methods serve to locate the SSP without quantifying it.

View Article and Find Full Text PDF

Nowadays, the measurement of heat stress indices is of principal importance due to the escalating impact of global warming. As temperatures continue to rise, the well-being and health of individuals are increasingly at risk, which can lead to a detrimental effect on human performance and behavior. Hence, monitoring and assessing heat stress indices have become necessary for ensuring the safety and comfort of individuals.

View Article and Find Full Text PDF

Proton Exchange Membrane Fuel Cells (PEMFCs) are critical components in renewable hybrid systems, demanding reliable fault diagnosis to ensure optimal performance and prevent costly damages. This study presents a novel model-based fault diagnosis algorithm for commercial hydrogen fuel cells using LabView. Our research focused on power generation and storage using hydrogen fuel cells.

View Article and Find Full Text PDF

In this work, a decentralized but synchronized real-world system for smart battery management was designed by using a general controller with cloud computing capability, four charge regulators, and a set of sensorized battery monitors with networking and Bluetooth capabilities. Currently, for real-world applications, battery management systems (BMSs) can be used in the form of distributed control systems where general controllers, charge regulators, and smart monitors and sensors are integrated, such as those proposed in this work, which allow more precise estimations of a large set of important parameters, such as the state of charge (SOC), state of health (SOH), current, voltage, and temperature, seeking the safety and the extension of the useful life of energy storage systems based on battery banks. The system used is a paradigmatic real-world example of the so-called intelligent battery management systems.

View Article and Find Full Text PDF

Catenary-pantograph contact force is generally used for assessment of the current collection quality. A good current collection quality not only increases catenary lifetime but also keeps a stable electric supply and helps to avoid accidents. Low contact forces lead to electric arcs that degrade the catenary, and high contact forces generate excessive wear on the sliding surfaces.

View Article and Find Full Text PDF

In large solar farms, supervision is an exhaustive task, often carried out manually by field technicians. Over time, automated or semi-automated fault detection and prevention methods in large photovoltaic plants are becoming increasingly common. The same does not apply when talking about small or medium-sized installations, where the cost of supervision at such level would mean total economic infeasibility.

View Article and Find Full Text PDF

Although the moment of inertia of padel rackets is one of their fundamental properties and of particular interest to the players, hardly any manufacturer specifies the parameter for its rackets. The present paper offers a solution to determine the moment of inertia around different axes of padel rackets and makes a standardized comparison possible. After a short overview of the physical background of the problem and the existing solutions for inertia testing, the developed concept for a test stand is described in detail.

View Article and Find Full Text PDF

In this work, new results are presented on the implementation of predictive diagnosis techniques on isolated photovoltaic (PV) systems and installations. The novelties introduced in this research focus on the additional advantages obtained from the point of view of predictive diagnosis of faults caused by partial shading in isolated PV installations using maximum power point tracking (MPPT) regulators. MPPT regulators are comparatively more appropriate than pulse width modulation (PWM) solar regulators in order to implement fault diagnosis systems.

View Article and Find Full Text PDF

This work presents a series of devices that generate renewable energy from the marine environment which, in recent years, have aroused increasing interest. In particular, the main types of floating wind generators and marine current turbines are described. Over time, some of these floating generators have evolved in various hybrid modalities, integrating different generation devices into the same system, wind turbines, marine current turbines, wave energy converters, etc.

View Article and Find Full Text PDF

Seaports' energy strategy should rely on the use of renewable energy. Presently, the share of renewable energy used by many of the ports worldwide is negligible. Some initiatives are in the process of implementation to produce some of the energy used by the Port of Valencia, one the largest ports in the Mediterranean Basin.

View Article and Find Full Text PDF

In this paper, an application for the management, supervision and failure forecast of a ship's energy storage system is developed through a National Marine Electronics Association (NMEA) 2000 smart sensor network. Here, the NMEA 2000 network sensor devices for the measurement and supervision of the parameters inherent to energy storage and energy supply are reviewed. The importance of energy storage systems in ships, the causes and models of battery aging, types of failures, and predictive diagnosis techniques for valve-regulated lead-acid (VRLA) batteries used for assisted and safe navigation are discussed.

View Article and Find Full Text PDF

In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system.

View Article and Find Full Text PDF

This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault.

View Article and Find Full Text PDF