Publications by authors named "Antonio Contreras-Gomez"

This study investigated the impact of culture medium salinity (5-50 PSU) on the growth and maximum photochemical yield of photosystem II (/) and the composition of carotenoids, fatty acids, and bioactive substances in three marine microalgae (, , and ). The microalgae were photoautotrophically cultured in discontinuous mode in a single stage (S1) and a two-stage culture with salt shock (S2). A growth model was developed to link biomass productivity with salinity for each species.

View Article and Find Full Text PDF

The marine dinoflagellate microalga is a source of amphidinols, a fascinating group of polyketide metabolites potentially useful in drug design. However, grows slowly and produces these toxins in tiny amounts, representing a hurdle for large-scale production. Understanding dinoflagellate growth kinetics under different photobioreactor conditions is imperative for promoting the successful implementation of a full-scale integrated bioproduct production system.

View Article and Find Full Text PDF

The shear-sensitive marine algal dinoflagellate Karlodinium veneficum was grown in a cylindrical bubble column photobioreactor with an internal diameter of 0.044 m. Initial liquid height varied from 0.

View Article and Find Full Text PDF

The shear-sensitive dinoflagellate microalga Karlodinium veneficum was grown in a sparged bubble column photobioreactor. The influence of mass transfer and shear stress on cell growth and physiology (concentration of reactive oxygen species, membrane fluidity and photosynthetic efficiency) was studied, and a model describing cell growth in term of mass transfer and culture parameters (nozzle sparger diameter, air flow rate, and culture height) was developed. The results show that mass transfer limits cell growth at low air-flow rates, whereas the shear stress produced by the presence of bubbles is critically detrimental for air flow rates above 0.

View Article and Find Full Text PDF

Since the infection strategy in the baculovirus-insect cell system mostly affects production of the vector itself or the target product, and given that individual infection parameters interact with each other, the optimal combination must be established for each such specific system. In this work an artificial neural network was used to model infection strategy, including the cell concentration at infection, the multiplicity of infection, the medium recycle, and agitation intensity, and to evaluate the relative importance of each factor in the baculovirus production obtained. The results demonstrate that this model can be used to select an optimal infection strategy.

View Article and Find Full Text PDF

The aim of this paper was to study the effect of spent medium recycle on Spodoptera exigua Se301 cell line proliferation, metabolism, and baculovirus production when grown in batch suspension cultures in Ex-Cell 420 serum-free medium. The results showed that the recycle of 20% of spent medium from a culture in mid-exponential growth phase improved growth relative to a control culture grown in fresh medium. Although both glucose and glutamine were still present at the end of the growth phase, glutamate was always completely exhausted.

View Article and Find Full Text PDF

The cell growth and monoclonal antibody production of the 55-6 hybridoma cell co-cultured with the murine thymoma cell line EL-4 at different initial 55-6:EL-4 ratios were investigated. Both populations were seeded in co-culture without previous stimulation and therefore with low constitutive CD40 and CD40 ligand (CD154) expression levels, and in the absence of exogenous co-stimuli. Viable cell density and growth rate data seem to suggest a competition for nutrients, which is detrimental for both cells in terms of biomass production and also of growth rate for 55-6.

View Article and Find Full Text PDF
Article Synopsis
  • Hydroxyurea (HU) treatment is used to create a cell population with a higher percentage of cells in the G1 phase for improved testing of CD40 expression and IgG2a production upon stimulation with anti-mIgG.
  • After applying HU, researchers also explored the effects of stimulating cells with Lipopolysaccharide (LPS) before and after treatment.
  • Results showed that while HU can help enrich the G1 phase, it negatively impacts CD40 expression and IgG2a production induced by anti-mIgG, especially when LPS is used, diminishing its positive effects.
View Article and Find Full Text PDF

This paper reports on a methodology for increasing proliferation and monoclonal antibody (mAb) production in hybridoma cultures. The 55-6 murine B cell hybridoma line (CD40 and CD19-deficient expression) was treated with increasing concentrations of lipopolysaccharide (LPS). Expression of CD69, CD40, and CD19 surface antigens on 55-6 cells did not show significant changes from untreated cells.

View Article and Find Full Text PDF

In previous experiments with the 55-6 hybridoma cell line, we showed that cell stimulation with anti-mouse surface immunoglobulin G antibody (anti-mIgG) increased both CD40 expression and specific monoclonal antibody (mAb) production rate. Cell preincubation with lipopolysaccharide (LPS) prior to anti-mIgG stimulation enhanced these results. Moreover, the expression of both CD40 and surface immunoglobulin G (sIgG) were higher for cells in the G1 phase of the cell cycle.

View Article and Find Full Text PDF

The 55-6 murine B cell hybridoma line not constitutively expressing CD40 was treated with increasing amounts of intact anti-mouse surface immunoglobulin G antibody (anti-mIgG) either not preincubated or preincubated for 48 h with lipopolysaccharide (LPS). In vitro, cross-linking of surface immunoglobulin G (sIgG) with the whole molecule of anti-IgG antibodies induced the expression of CD69, CD40, and CD19 surface antigens on 55-6 cells. The effect of sIgG ligation was dose-dependent, and preincubation with LPS enhanced their responsiveness to anti-mIgG stimulation.

View Article and Find Full Text PDF

Marine sponges are potential sources of many unique metabolites, including cytotoxic and anticancer compounds. Natural sponge populations are insufficient or inaccessible for producing commercial quantities of metabolites of interest. This review focuses on methods of producing sponge biomass to overcome supply limitations.

View Article and Find Full Text PDF