The RXN for Chemistry project, initiated by IBM Research Europe - Zurich in 2017, aimed to develop a series of digital assets using machine learning techniques to promote the use of data-driven methodologies in synthetic organic chemistry. This research adopts an innovative concept by treating chemical reaction data as language records, treating the prediction of a synthetic organic chemistry reaction as a translation task between precursor and product languages. Over the years, the IBM Research team has successfully developed language models for various applications including forward reaction prediction, retrosynthesis, reaction classification, atom-mapping, procedure extraction from text, inference of experimental protocols and its use in programming commercial automation hardware to implement an autonomous chemical laboratory.
View Article and Find Full Text PDF