Publications by authors named "Antonio Caravaca-Aguirre"

Diffraction-limited imaging in epi-fluorescence microscopy remains a challenge when sample aberrations are present or when the region of interest rests deep within an inhomogeneous medium. Adaptive optics is an attractive solution, albeit with limited field of view and requiring relatively complicated systems. Alternatively, reconstruction algorithms have been developed over the years to correct for aberrations.

View Article and Find Full Text PDF
Article Synopsis
  • Speckle-correlation imaging can help visualize images through complex materials without invasive techniques, but challenges exist in applying this to multimode fibers for image reconstruction.* -
  • Researchers have discovered a new method using a kaleidoscopic memory effect in square-core multimode fibers to perform fluorescence imaging without needing prior knowledge of the fiber.* -
  • The process involves translating random speckle patterns into the fiber, measuring the fluorescence with a simple detector, and reconstructing images by solving an inverse problem, making it a practical approach for developing flexible endoscopes.*
View Article and Find Full Text PDF

We demonstrate experimentally the existence of a translational optical memory effect in square-core multimode fibers. We found that symmetry properties of square-core waveguides lead to speckle patterns shifting along four directions at the fiber output for any given shift direction at the input. A simple theoretical model based on a perfectly reflective square waveguide is introduced to predict and interpret this phenomenon.

View Article and Find Full Text PDF

We present a minimally-invasive endoscope based on a multimode fiber that combines photoacoustic and fluorescence sensing. From the measurement of a transmission matrix during a prior calibration step, a focused spot is produced and raster-scanned over a sample at the distal tip of the fiber by use of a fast spatial light modulator. An ultra-sensitive fiber-optic ultrasound sensor for photoacoustic detection placed next to the fiber is combined with a photodetector to obtain both fluorescence and photoacoustic images with a distal imaging tip no larger than 250 µm.

View Article and Find Full Text PDF

A major open challenge in neuroscience is the ability to measure and perturb neural activity in vivo from well defined neural sub-populations at cellular resolution anywhere in the brain. However, limitations posed by scattering and absorption prohibit non-invasive multi-photon approaches for deep (>2mm) structures, while gradient refractive index (GRIN) endoscopes are relatively thick and can cause significant damage upon insertion. Here, we present a novel micro-endoscope design to image neural activity at arbitrary depths via an ultra-thin multi-mode optical fiber (MMF) probe that has 5-10X thinner diameter than commercially available micro-endoscopes.

View Article and Find Full Text PDF

Multimode fibers can guide thousands of modes capable of delivering spatial information. Unfortunately, mode dispersion and coupling have so far prevented their use in endoscopic applications. To address this long-lasting challenge, we present a robust scanning fluorescence endoscope.

View Article and Find Full Text PDF

Focusing inside scattering media is a challenging task with a variety of applications in biomedicine. State of the art methods mostly require invasive feedback inside or behind the sample, limiting practical use. We present a technique for dynamic control and focusing inside scattering media that combines two powerful methods: optical coherence tomography (OCT) and wave-front shaping (WFS).

View Article and Find Full Text PDF

The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to imaging through scattering walls. A key to the practicality of any imaging through scattering technique is the capability to focus light without direct access behind the scattering wall. Here we address this problem using photoacoustic feedback for wavefront optimization.

View Article and Find Full Text PDF
Article Synopsis
  • This work introduces the first use of Laser Speckle Contrast Imaging (LSCI) with extended depth of field (DOF) for better imaging of blood flow.
  • It utilizes wavefront coding to enhance flow speed measurement, achieving a two-fold increase in DOF compared to conventional methods.
  • The system is tested in controlled experiments and successfully applied to the in-vivo imaging of a rat's somatosensory cortex, enabling clearer visualization of multiple blood vessels at once.
View Article and Find Full Text PDF

We demonstrate enhanced three-dimensional photoacoustic imaging behind a scattering material by increasing the fluence in the ultrasound transducer focus. We enhance the optical intensity using wavefront shaping before the scatterer. The photoacoustic signal induced by an object placed behind the scattering medium serves as feedback to optimize the wavefront, enabling one order of magnitude enhancement of the photoacoustic amplitude.

View Article and Find Full Text PDF

Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imaging. To tackle this problem we introduce a system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports.

View Article and Find Full Text PDF

We introduce genetic algorithms (GA) for wavefront control to focus light through highly scattering media. We theoretically and experimentally compare GAs to existing phase control algorithms and show that GAs are particularly advantageous in low signal-to-noise environments.

View Article and Find Full Text PDF

We introduce a phase-control holographic technique to characterize scattering media with the purpose of focusing light through it. The system generates computer-generated holograms implemented via a deformable mirror device (DMD) based on micro-electro-mechanical technology. The DMD can be updated at high data rates, enabling high speed wavefront measurements using the transmission matrix method.

View Article and Find Full Text PDF

Three-dimensional microparticle movements induced by laser beams with a funnel- and tubular pod-like structure, in the neighbourhood of the focal plane of an optical trapping setup, are experimentally studied. The funnel and pod beams constructed as coherent superpositions of helical Laguerre-Gaussian modes are synthesized by a computer generated hologram using a phase-only spatial light modulator. Particle tracking is achieved by in-line holography method which allows an accurate position measurement.

View Article and Find Full Text PDF