Publications by authors named "Antonio Cambria"

Laccases are multicopper oxidases in which substrate oxidation takes place at the type-1 (T1) copper site. The redox potential (E (0)) significantly varies amongst members of the family and is a key parameter for substrate specificity. Despite sharing highly conserved features at the T1 copper site, laccases span a large range of E (0), suggesting that the influence of the metal secondary coordination sphere is important.

View Article and Find Full Text PDF

The white rot fungus Rigidoporus lignosus produces substantial amounts of extracellular laccase, a multicopper blue oxidase which is capable of oxidizing a wide range of organic substrates. Laccase production can be greatly enhanced in liquid cultures supplemented with various aromatic and phenolic compounds. The maximum enzyme activity was reached at the 21st or 24th day of fungal cultivation after the addition of inducers.

View Article and Find Full Text PDF

Laccases are polyphenol oxidases which oxidize a broad range of reducing substrates, preferably phenolic compounds, and their use in biotechnological applications is increasing. Recently, the first X-ray structure of active laccase from white rot fungus Rigidoporus lignosus has been reported containing a full complement of copper ions. Comparison among selected fungal laccases of known 3D structure has shown that the Rigidoporus lignosus laccase has a very high similarity with the Trametes versicolor laccase that, being co-crystallized with 2,5-xylidine, shows a well defined binding pocket for the substrate.

View Article and Find Full Text PDF

Previous studies have clarified the molecular mechanism of photosensitization on red blood cell membranes induced by some drugs belonging to the class of nonsteroidal antiinflammatory drugs: ketoprofen, naproxen, and diflunisal. This process involves the participation of photodegradation products, free radicals, and reactive oxygen species. The aim of the present paper is to investigate the photohemolytic process using red blood cells of mammalian species, with different membrane phospholipid compositions.

View Article and Find Full Text PDF

Laccases from various sources were tested, and laccase from Rigidoporus lignosus was found to be the most active towards syringaldazine and ABTS, which are typical substrates of this class of enzymes, and towards the phenols found in olive oil mill wastewaters. This laccase was covalently immobilised by carbodiimide chemistry, on a self-assembled monolayer of 3-mercaptopropionic acid deposited on a gold surface. A flow biosensor, using the monolayer of laccase as bioelement and a glassy carbon electrode as amperometric transduction system, was developed.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-dG), a marker for oxidative DNA damage, using a specific antibody to detect it in marine organisms.
  • Laboratory tests with benzo[a]pyrene (B[a]P) showed significant oxidative DNA damage in treated animals compared to controls.
  • The immunohistochemical method allows for analysis without DNA extraction, using less tissue, and could help identify how different cell types respond to oxidative damage, making it useful in marine ecotoxicology.
View Article and Find Full Text PDF

7,8-Dihydro-8-oxodeoxyguanosine (8-oxo-dG) is a typical modification of DNA caused by oxygen free radicals and can be an useful biomarker for pollutants inducing oxidative stress. An immunoperoxidase method using monoclonal antibody 1F7 toward 8-oxo-dG was applied to tissues and smeared cells of marine organisms for detection and quantification of oxidative DNA damage in such models. The assay, previously employed on human cells, was assessed for the first time on Mediterranean mussels (Mytilus galloprovincialis) and European eels (Anguilla anguilla), exposed to model pro-oxidant chemicals, namely benzo[a]pyrene (B[a]P) and copper.

View Article and Find Full Text PDF

The structure and thermal stability of a laccase from Rigidoporus lignosus (Rl) was analysed by Fourier-transform infrared (FT-IR) spectroscopy. The enzyme was depleted of copper atoms, then part of the apoenzyme was re-metalled and these two forms of the protein were analysed as well. The enzymatic activity, lost by the removal of copper atoms, was restored in the re-metalled apoenzyme and resulted similar to that of native protein.

View Article and Find Full Text PDF