Publications by authors named "Antonio C Silva Ferreira"

High-throughput (HTP) plant phenotyping approaches are developing rapidly and are already helping to bridge the genotype-phenotype gap. However, technologies should be developed beyond current physico-spectral evaluations to extend our analytical capacities to the subcellular level. Metabolites define and determine many key physiological and agronomic features in plants and an ability to integrate a metabolomics approach within current HTP phenotyping platforms has huge potential for added value.

View Article and Find Full Text PDF

The present work shows key possibilities in modelling the kinetics of phenylacetaldehyde formation as a function of sugar, phenolic compounds, metals and sulphur dioxide. The release kinetics were measured online by proton transfer reaction-mass spectrometry (PTR-MS). Phenylacetaldehyde formation was fitted using Weibull models and an activation energy of 73 kJ/mol estimated.

View Article and Find Full Text PDF

A response surface methodology was applied to study the effect of precursors on o-quinone and phenylacetaldehyde formation in wine model systems stored at 40 °C during 24 h. The results confirmed that glucose plays an important role in reducing aldehyde formation by inhibiting the formation of o-quinone. The regression equations showed that oxygen consumption followed a 2nd polynomial equation whereas phenylacetaldehyde and o-quinone were best fit with a polynomial function containing quadratic terms.

View Article and Find Full Text PDF

Succinic acid is a platform chemical that plays an important role as precursor for the synthesis of many valuable bio-based chemicals. Its microbial production from renewable resources has seen great developments, specially exploring the use of yeasts to overcome the limitations of using bacteria. The objective of the present work was to screen for succinate-producing isolates, using a yeast collection with different origins and characteristics.

View Article and Find Full Text PDF

Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how controlled oxidation affects both the chemical makeup and sensory qualities of Sauvignon blanc wine, focusing on its fresh and fruity characteristics.
  • It was found that repeated oxidation reduced fruity volatile thiols while increasing oxidation-related compounds like acetaldehyde, leading to a shift from fresh flavors to more oxidized notes.
  • In contrast, control samples without added oxygen developed a "cooked" taste, while wines with a single oxygen dose maintained a fresher and fruitier profile, with color changes occurring before any loss of aroma.
View Article and Find Full Text PDF

During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins.

View Article and Find Full Text PDF

In this paper, computational means were used to explain and predict the interaction of several odorant molecules, including three haloanisoles, 2,4,6-trichloroanisole (TCA), 2,4,6-tribromoanisole (TBA), and 2,4,6-trichlorophenol (TCP), with three olfactory receptors (ORs): OR1A1, OR1A2, and OR3A1. As the X-ray structure of these ORs is not known, the three-dimensional structure of each OR was modeled by homology modeling. The structures of these ORs were stabilized by molecular dynamic simulations and the complexes of the odorant molecules with each ORs were generated by molecular docking.

View Article and Find Full Text PDF

Although neglected by science for a long time, the olfactory sense is now the focus of a panoply of studies that bring new insights and raises interesting questions regarding its functioning. The importance in the clarification of this process is of interest for science, but also motivated by the food and perfume industries boosted by a consumer society with increasingly demands for higher quality standards. In this review, a general overview of the state of art of science regarding the olfactory sense is presented with the main focus on the peripheral olfactory system.

View Article and Find Full Text PDF

Although phenolics are recognized to be related with health benefits by limiting lipid oxidation, in wine, they are the primary substrates for oxidation resulting in the quinone by-products with the participation of transition metal ions. Nevertheless, high quality Port wines require a period of aging in either bottle or barrels. During this time, a modification of sensory properties of wines such as the decrease of astringency or the stabilization of color is recognized to phenolic compounds, mainly attributed to anthocyanins and derived pigments.

View Article and Find Full Text PDF

Mushrooms are known all over the world both due to the remarkable gastronomic value of some species and for severe intoxications mediated by other species that are frequently difficult to distinguish from the edible ones, by the common user. Therefore, it is important to develop strategies to discover molecules that can identify mushroom species. In the present work, two GC-MS methodologies were applied in the chemical characterization of 22 mushroom species (12 edible, 3 toxic and 7 potentially toxic) - a multi-target procedure to simultaneously determine amino acids (AA), fatty acids (FA) and sterols by previous derivatization procedure with MSTFA, and a Head Space-Solid Phase Microextraction method to determine volatiles.

View Article and Find Full Text PDF

Metabolomics aims at gathering the maximum amount of metabolic information for a total interpretation of biological systems. A process analytical technology pipeline, combining gas chromatography-mass spectrometry data preprocessing with multivariate analysis, was applied to a Port wine "forced ageing" process under different oxygen saturation regimes at 60°C. It was found that extreme "forced ageing" conditions promote the occurrence of undesirable chemical reactions by production of dioxane and dioxolane isomers, furfural and 5-hydroxymethylfurfural, which affect the quality of the final product through the degradation of the wine aromatic profile, colour and taste.

View Article and Find Full Text PDF

Chromatography separates the different components of complex mixtures and generates a fingerprint representing the chemical composition of the sample. The resulting data structure depends on the characteristics of the detector used, univariate for devices such as a flame ionization detector (FID) or multivariate for mass spectroscopy (MS). This study addresses the potential use of a univariate signal for a nontargeted approach to (i) classify samples according to a given process or perturbation, (ii) evaluate the feasibility of developing a screening procedure to select candidates related to the process, and (iii) provide insight into the chemical mechanisms that are affected by the perturbation.

View Article and Find Full Text PDF

This study is focused on the evaluation of the impact of Saccharomyces cerevisiae metabolism in the profile of compounds with antioxidant capacity in a synthetic wine during fermentation. A bioanalytical pipeline, which allows for biological systems fingerprinting and sample classification by combining electrochemical features with biochemical background, is proposed. To achieve this objective, alcoholic fermentations of a minimal medium supplemented with phenolic acids were evaluated daily during 11 days, for electrochemical profile, phenolic acids, and the volatile fermentation fraction, using cyclic voltametry, high-performance liquid chromatography-diode array detection, and headspace/solid-phase microextraction/gas chromatography-mass spectrometry (target and nontarget approaches), respectively.

View Article and Find Full Text PDF

Beer stability is a major concern for the brewing industry, as beer characteristics may be subject to significant changes during storage. This paper describes a novel non-targeted methodology for monitoring the chemical changes occurring in a lager beer exposed to accelerated aging (induced by thermal treatment: 18 days at 45 °C), using gas chromatography-mass spectrometry in tandem with multivariate analysis (GC-MS/MVA). Optimization of the chromatographic run was performed, achieving a threefold reduction of the chromatographic time.

View Article and Find Full Text PDF

Strain VC-230(T) was isolated from homemade vermicompost produced from kitchen waste. The isolate was a Gram-negative-staining, catalase- and oxidase-positive, motile rod-shaped bacterium able to grow at 15-37 degrees C and pH 6-8. On the basis of 16S rRNA gene sequence analysis, strain VC-230(T) was determined to belong to the family Sphingomonadaceae by its clustering with type strains of the genus Sphingobium, with Sphingobium chlorophenolicum ATCC 33790(T) (97.

View Article and Find Full Text PDF

The aim of this study was to determine the optimal temperature and baking time to obtain a Madeira wine considered typical by an expert panel. For this purpose simultaneous descriptive analyses of typical Madeira wines were performed, and seven descriptors were selected: "dried fruit", "nutty", "musty", "baked", "oak", "mushroom", and "brown sugar". Up to 10 odor-active zones were the most frequently cited by the members of the GC-olfactometry panel as corresponding to the panel's descriptors.

View Article and Find Full Text PDF

The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples.

View Article and Find Full Text PDF

The carotenoids degradation and the formation of volatiles were examined by simulating Port wine aging. A two year old red Port wine was saturated with oxygen, supplemented with lutein and β-carotene and kept at 60°C during 87h. A similar study was performed in a model wine solution.

View Article and Find Full Text PDF

The aroma of the three different classes of Sherry vinegar was evaluated by gas chromatography/mass spectrometry (GC-MS) and gas chromatography/olfactometry (GC-O). GC-O was employed to identify substances responsible for aromatic notes associated with the selected descriptors of the typical aroma of Sherry vinegar and odor activity values (OAV) calculated to measure the single impact effect of different compounds selected by GC-O. Diacetyl, isoamyl acetate, ethyl isobutyrate, isovaleric acid, sotolon, and ethyl acetate reached high OAVs, turning out to be characteristic odor active compounds in Sherry vinegars.

View Article and Find Full Text PDF

Two gas chromatography-olfactometry (GC-O) techniques were used to screen targeting compounds with an impact on the perceived quality of Sherry vinegar: detection frequency and aroma extract dilution analysis (AEDA). The GC-O study revealed the presence of 108 aromatic notes, of which 64 were identified. Diacetyl, isoamyl acetate, acetic acid, and sotolon reached the highest frequency and flavor dilution (FD) factors.

View Article and Find Full Text PDF

A bacterial strain isolated from sewage sludge compost, strain SC-083T, was characterized. The isolate was a motile, Gram-positive, short rod, forming coryneform V-shaped cells during the early stages of growth. The organism was strictly aerobic and able to grow between 22 and 36 degrees C and between pH 5.

View Article and Find Full Text PDF

A novel pathway of molinate mineralization promoted by a defined mixed culture composed of five bacteria (named ON1 to ON5) was proposed previously. Evidence was obtained of a metabolic association between Gulosibacter molinativorax ON4(T), capable of molinate breakdown, and the remaining bacteria. In the present study, the role of each isolate in that metabolic association was further explored and the possible synergistic effect of all the bacterial isolates for the stability of the mixed culture is discussed.

View Article and Find Full Text PDF

The aim of this work was the simultaneous determination of both ketoacids and dicarbonyl compounds in wine. To detect ketoacid compounds in wine, a method based on the quinoxaline derivatives by the reaction with diaminobenzene, currently employed to detect alpha-dicarbonyl compounds, was developed. The quinoxaline derivatives were detected by RP-HPLC with UV detection, which allows the determination of the major dicarbonyl compounds in wine: glyoxal, methylglyoxal, diacetyl and pentane-2,6-dione, and the quinoxaline/quinoxalinol derivatives of alpha-keto-gamma-(methylthio)butyric acid and beta-phenylpyruvic acid (intermediate ketoacid compounds of methional and phenylacetaldehyde) were simultaneously detected by a fluorescence detector.

View Article and Find Full Text PDF

Carotenoids and chlorophyll-derived compounds in grapes and Port wines were investigated by HPLC-DAD and HPLC-DAD-MS (ESP+) analysis. A total of 13 carotenoid and chlorophyll-derived compounds are formally reported in grapes, 3 are identified for the first time, pheophytins a and b and (13Z)-beta-carotene, and 3 others remain unknown. In Port wines 19 compounds with carotenoid or chlorophyll-like structures are present, 8 still unidentified.

View Article and Find Full Text PDF