Carbene footprinting is a recently developed mass spectrometry-based chemical labeling technique that probes protein interactions and conformation. Here, we use the methodology to investigate binding interactions between the protease human Caspase-1 (C285A) and full-length human Gasdermin D (hGSDMD), which are important in inflammatory cell death. GSDMD is cleaved by Caspase-1, releasing its N-terminal domain which oligomerizes in the membrane to form large pores, resulting in lytic cell death.
View Article and Find Full Text PDFChromatin remodelling and transcription factors play important roles in lineage commitment and development through control of gene expression. Activation of selected lineage-specific genes and repression of alternative lineage-affiliated genes result in tightly regulated cell differentiation transcriptional programmes. However, the complex functional and physical interplay between transcription factors and chromatin-modifying enzymes remains elusive.
View Article and Find Full Text PDFThick filaments from some striated muscles are regulated by phosphorylation of myosin regulatory light chains (RLCs). A tarantula thick filament quasi-atomic model achieved by cryo-electron microscopy has advanced our understanding on how this regulation occurs. In native thick filaments, an asymmetric intramolecular interaction between the actin-binding region of one myosin head ("blocked") and the converter region of the other head ("free") switches both heads off, establishing the myosin interacting-heads motif (IHM).
View Article and Find Full Text PDFSMARCAD1 is a non-canonical chromatin remodelling ATPase, unique in its domain organization in that is encodes tandem ubiquitin binding CUE domains along with a classical SNF2 helicase ATP-dependent motor. SMARCAD1 is conserved from yeast to humans and has reported roles in the maintenance of heterochromatin following replication and in double-strand break repair. Here we present the H, C and N assignments for the tandem CUE domains and for the disordered regions that flank them.
View Article and Find Full Text PDFProliferating cell nuclear antigen (PCNA) is an essential cofactor for DNA replication and repair, recruiting multiple proteins to their sites of action. We examined the effects of the PCNA mutation that causes PCNA-associated DNA repair disorder (PARD). Cells from individuals affected by PARD are sensitive to the PCNA inhibitors T3 and T2AA, showing that the S228I mutation has consequences for undamaged cells.
View Article and Find Full Text PDFMyosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45.
View Article and Find Full Text PDFThe synthesis of the meso-tetra(pyren-1-yl)porphyrin (1) was successfully accomplished by means of the pyrrole condensation with pyrene-1-carb-aldehyde in acidic media. Its metallization was carried out in an almost quantitative yield to obtain the corresponding complexes of Ni(II) (2), Cu(II) (3) and Zn (4). Their photophysical properties such as fluorescence quantum yield and energy transfer to oxygen for an efficient generation of singlet oxygen were determined.
View Article and Find Full Text PDF