Publications by authors named "Antonio Bermejo Gomez"

Current treatments for osteoarthritis (OA) often fail to address the underlying pathophysiology and may have systemic side effects, particularly associated with long-term use of non-steroidal anti-inflammatory drugs (NSAIDs). Thus, researchers are currently directing their efforts toward innovative polymer-drug combinations, such as mixtures of hyaluronic acid viscoelastic hydrogels and NSAIDs like diclofenac, to ensure sustained release of the NSAID within the joint following intra-articular injection. However, the progress of novel injectable therapies for OA is hindered by the absence of preclinical models that accurately represent the pathology of the disease.

View Article and Find Full Text PDF

Operationally simple radiosynthesis and purification of [18F]fluoro-benziodoxole was developed starting from a cyclotron produced [18F]F- precursor, [18F]TBAF, and tosyl-benziodoxole. The synthetic utility of [18F]fluoro-benziodoxole was demonstrated by electrophilic fluorocyclization of o-styrilamides proceeding with high RCC (typically 50-90%) and high molar activity (up to 396 GBq μmol-1).

View Article and Find Full Text PDF

The preparation of a highly water stable and porous lanthanide metal-organic framework (MOF) nanoparticles (denoted SUMOF-7II; SU refers to Stockholm University) is described. SUMOF-7II was synthesized starting from the tritopic linker of 2,4,6-tri-p-carboxyphenyl pyridine (HL2) and La(III) as metal clusters. SUMOF-7II forms a stable dispersion and displays high fluorescence emission with small variation over the pH range of 6 to 12.

View Article and Find Full Text PDF

2,2-Diiodo-5,5-dimethylcyclohexane-1,3-dione is reported as a new electrophilic iodinating agent that selectively iodinates electron-rich aromatics. In contrast to other common electrophilic iodinating reagents, its mild nature allows it to be used for the selective synthesis of α-iodinated carbonyl compounds from allylic alcohols through a 1,3-hydrogen shift/iodination process catalyzed by iridium(iii) complexes.

View Article and Find Full Text PDF

Here we describe the topological transformation of the pores of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during postsynthesis modifications. During this transformation, reassembling of the metal-organic framework (MOF) building blocks into a completely different framework occurs, involving breaking/forming of metal-ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively.

View Article and Find Full Text PDF

Nucleophilic F-fluorination of bromodifluoromethyl derivatives was performed using [F]BuNF in the presence of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene).

View Article and Find Full Text PDF

Remarkably simple Ir catalysts enable the isomerization of primary and sec-allylic alcohols under very mild reaction conditions. X-ray absorption spectroscopy (XAS) and mass spectrometry (MS) studies indicate that the catalysts, with the general formula [Cp*Ir ], require a halide ligand for catalytic activity, but no additives or additional ligands are needed.

View Article and Find Full Text PDF

A mild base-catalyzed strategy for the isomerization of allylic alcohols and allylic ethers has been developed. Experimental and computational investigations indicate that transition metal catalysts are not required when basic additives are present. As in the case of using transition metals under basic conditions, the isomerization catalyzed solely by base also follows a stereospecific pathway.

View Article and Find Full Text PDF

Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2 : 1) nano-Pd on a metal-organic framework (MOF: Pd(0) -MIL-101-NH2 (Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd(0) -AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C.

View Article and Find Full Text PDF

The chemical stability of metal-organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki-Miyaura cross-coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL-101-NH2 (Cr). Four bases were compared for the reaction: K2 CO3 , KF, Cs2 CO3 and CsF.

View Article and Find Full Text PDF

A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures.

View Article and Find Full Text PDF

The synthesis of a metal-organic framework (UiO-67) functionalised simultaneously with two different transition metal complexes (Ir and Pd or Rh) through a one-pot procedure is reported for the first time. This has been achieved by an iterative modification of the synthesis parameters combined with characterisation of the resulting materials using different techniques, including X-ray absorption spectroscopy (XAS). The method also allows the first synthesis of UiO-67 with a very wide range of loadings (from 4 to 43 mol %) of an iridium complex ([IrCp*(bpydc)(Cl)Cl](2-) ; bpydc=2,2'-bipyridine-5,5'-dicarboxylate, Cp*=pentamethylcyclopentadienyl) through a pre-functionalisation methodology.

View Article and Find Full Text PDF

α-Brominated ketones and aldehydes, with two adjacent electrophilic carbon atoms, are highly valuable synthetic intermediates in organic synthesis, however, their synthesis from unsymmetrical ketones is very challenging, and current methods suffer from low selectivity. We present a new, reliable, and efficient method for the synthesis of α-bromocarbonyl compounds in excellent yields and with excellent selectivities. Starting from allylic alcohols as the carbonyl precursors, the combination of a 1,3-hydrogen shift catalyzed by iridium(III) with an electrophilic bromination gives α-bromoketones and aldehydes in good to excellent yields.

View Article and Find Full Text PDF

Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16 wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied.

View Article and Find Full Text PDF