Publications by authors named "Antonio Barrero"

Electrosprays are a powerful technique to generate charged micro/nanodroplets. In the last century, the technique has been extensively studied, developed, and recognized with a shared Nobel price in Chemistry in 2002 for its wide spread application in mass spectrometry. However, nowadays techniques based on microfluidic devices are competing to be the next generation in atomization techniques.

View Article and Find Full Text PDF

The absorption and desorption of water, as well as the retention of certain molecules within a polymeric network, have special interest in a wide range of applications, including drug delivery, biosensing, chemical separation, catalysis, and optics. In this communication, we report the encapsulation by electrospinning of poly(N-isopropylacrylamide)-based monodisperse microgels within microfibers of crosslinked poly(vinylpyrrolidone), which is a hydrogel itself, up to concentrations of 40 wt.-% of the microgels.

View Article and Find Full Text PDF

There are situations in which bioactive products of interest in biotechnology turn out to be hydrophobic. To reach high uniform levels of such products in water-based host fluids, such as those existing in many biological environments, one strategy consists on dividing the bioactive product into tiny micrometer (or sub-micrometer) pieces, since these are much more amenable of being uniformly dispersed and stabilized in the host fluid. On the other hand, if the bioactive product must act at specific locations, these micrometer pieces need to be hold in place, an objective that may be achieved by encapsulating them in mats of fibers.

View Article and Find Full Text PDF

The outer liquid of a two-liquid coaxial electrified jet is gelled before the onset of natural instabilities to yield hollow nanofibers. By using sol-gel chemistry, innocuous solvents such as glycerol and olive oil, and electrohydrodynamics, it is possible to make such structures in a rather straightforward manner.

View Article and Find Full Text PDF

Electrically driven liquid jets are combined with sol-gel methods to design vesicles and fibers made from inorganic oxides and hybrid materials with diameters in the micrometer and submicrometer range. The proposed materials synthesis method benefits greatly from the maturity of sol-gel chemistry and the generalities of a structure-directing phenomenon that is physical in nature.

View Article and Find Full Text PDF