The ability of using integrated photonics to scale multiple optical components on a single monolithic chip offers key advantages to create miniature light-controlling chips. Numerous scaled optical components have been already demonstrated. However, present integrated photonic circuits are still rudimentary compared to the complexity of today's electronic circuits.
View Article and Find Full Text PDFWe report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features.
View Article and Find Full Text PDFWe report a photoluminescence imaging system for locating single quantum emitters with respect to alignment features. Samples are interrogated in a 4 K closed-cycle cryostat by a high numerical aperture (NA = 0.9, 100× magnification) objective that sits within the cryostat, enabling high efficiency collection of emitted photons without image distortions due to the cryostat windows.
View Article and Find Full Text PDFSelf-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices.
View Article and Find Full Text PDFSingle epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light.
View Article and Find Full Text PDFWe show that quantum frequency conversion (QFC) can overcome the spectral distinguishability common to inhomogeneously broadened solid-state quantum emitters. QFC is implemented by combining single photons from an InAs/GaAs quantum dot (QD) at 980 nm with a 1550 nm pump laser in a periodically poled lithium niobate (PPLN) waveguide to generate photons at 600 nm with a signal-to-background ratio exceeding 100:1. Photon correlation and two-photon interference measurements confirm that both the single photon character and wave packet interference of individual QD states are preserved during frequency conversion.
View Article and Find Full Text PDFIn a coupled quantum-dot-nanocavity system, the photoluminescence from an off-resonance cavity mode exhibits strong quantum correlations with the quantum-dot transitions, even though its autocorrelation function is classical. Using new pump-power dependent photon-correlation measurements, we demonstrate that this seemingly contradictory observation that has so far defied an explanation stems from cascaded cavity photon emission in transitions between excited multiexciton states. The mesoscopic nature of quantum-dot confinement ensures the presence of a quasicontinuum of excitonic transitions, part of which overlaps with the cavity resonance.
View Article and Find Full Text PDFWe show how cavity quantum electrodynamics using a tunable photonic crystal nanocavity in the strong-coupling regime can be used for single quantum dot spectroscopy. From the distinctive avoided crossings observed in the strongly coupled system we can identify the neutral and single positively charged exciton as well as the biexciton transitions. Moreover we are able to investigate the fine structure of those transitions and to identify a novel cavity mediated mixing of bright and dark exciton states, where the hyperfine interactions with lattice nuclei presumably play a key role.
View Article and Find Full Text PDFWe demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance.
View Article and Find Full Text PDFWe have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number.
View Article and Find Full Text PDFWe have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.
View Article and Find Full Text PDFWe present an optical study of two closely stacked self-assembled InAs/GaAs quantum dots. The energy spectrum and correlations between photons subsequently emitted from a single pair provide not only clear evidence of coupling between the quantum dots but also insight into the coupling mechanism. Our results are in agreement with recent theories predicting that tunneling is largely suppressed between nonidentical quantum dots and that the interaction is instead dominated by dipole-dipole coupling and phonon-assisted energy transfer processes.
View Article and Find Full Text PDFWe demonstrate a deterministic approach to the implementation of solid-state cavity quantum electrodynamics (QED) systems based on a precise spatial and spectral overlap between a single self-assembled quantum dot and a photonic crystal membrane nanocavity. By fine-tuning nanocavity modes with a high quality factor into resonance with any given quantum dot exciton, we observed clear signatures of cavity QED (such as the Purcell effect) in all fabricated structures. This approach removes the major hindrances that had limited the application of solid-state cavity QED and enables the realization of experiments previously proposed in the context of quantum information processing.
View Article and Find Full Text PDFWe describe a general method for producing ultrahigh-density arrays of aligned metal and semiconductor nanowires and nanowire circuits. The technique is based on translating thin film growth thickness control into planar wire arrays. Nanowires were fabricated with diameters and pitches (center-to-center distances) as small as 8 nanometers and 16 nanometers, respectively.
View Article and Find Full Text PDF