ACS Appl Mater Interfaces
May 2020
Fluorescent organic nanoparticles (FONs) are emerging as an attractive alternative to the well-established fluorescent inorganic nanoparticles or small organic dyes. Their proper design allows one to obtain biocompatible probes with superior brightness and high photostability, although usually affected by low colloidal stability. Herein, we present a type of FONs with outstanding photophysical and physicochemical properties in-line with the stringent requirements for biomedical applications.
View Article and Find Full Text PDFDelivery of hydrophobic materials in biological systems, for example, contrast agents or drugs, is an obdurate challenge, severely restricting the use of materials with otherwise advantageous properties. The synthesis and characterization of a highly stable and water-soluble nanovesicle, referred to as a quatsome (QS, vesicle prepared from cholesterol and amphiphilic quaternary amines), that allowed the nanostructuration of a nonwater soluble fluorene-based probe are reported. Photophysical properties of fluorenyl-quatsome nanovesicles were investigated via ultraviolet-visible absorption and fluorescence spectroscopy in various solvents.
View Article and Find Full Text PDFDiketopyrrolopyrroles (DPPs) have recently attracted much interest as very bright and photostable red-emitting molecules. However, their tendency to form nonfluorescent aggregates in water through the aggregation-caused quenching (ACQ) effect is a major issue that limits their application under the microscope. Herein, two DPP molecules have been incorporated into the membrane of highly stable and water-soluble quatsomes (QS; nanovesicles composed of surfactants and sterols), which allow their nanostructuration in water and, at the same time, limits the ACQ effect.
View Article and Find Full Text PDFA new kind of fluorescent organic nanoparticles (FONs) is obtained using quatsomes (QSs), a family of nanovesicles proposed as scaffolds for the nanostructuration of commercial lipophilic carbocyanines (1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI), 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indodicarbocyanine perchlorate (DiD), and 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indotricarbocyanine iodide (DiR)) in aqueous media. The obtained FONs, prepared by a CO -based technology, show excellent colloidal- and photostability, outperforming other nanoformulations of the dyes, and improve the optical properties of the fluorophores in water. Molecular dynamics simulations provide an atomistic picture of the disposition of the dyes within the membrane.
View Article and Find Full Text PDF