The European Commission is designing and implementing new regulations for vehicle navigation in different sectors. Commission Delegated Regulation 2017/79 defines the compatibility and performance of the 112-based eCall in-vehicle systems. The regulation has a large impact on road transportation because it requires that all cars and light duty vehicles must be equipped with eCall devices.
View Article and Find Full Text PDFEmployment of precise positioning techniques will enable low-cost receivers for a variety of applications. The complexity of techniques such as Precise Point Positioning (PPP), or differential techniques that require the use of external sources of corrections, could be a disadvantage for users. On the other hand, a simple technique such as Single-Point Positioning (SPP) alone does not provide high-level accuracy.
View Article and Find Full Text PDFIonospheric error is one of the largest errors affecting global navigation satellite system (GNSS) users in open-sky conditions. This error can be mitigated using different approaches including dual-frequency measurements and corrections from augmentation systems. Although the adoption of multi-frequency devices has increased in recent years, most GNSS devices are still single-frequency standalone receivers.
View Article and Find Full Text PDFGNSS (Global Navigation Satellite System) receivers are not only able to accurately determine position, but also velocity, knowledge of which could be important in several applications. The most adopted technique for velocity estimation exploits the Doppler shift due to the relative motion between the signal source and the receiver. Alternatively, the TDCP (Time-Differenced Carrier Phase) technique, based on the differences between consecutive carrier-phase measurements, can be used.
View Article and Find Full Text PDFSensors (Basel)
January 2022
In an urban scenario, GNSS performance is strongly influenced by gross errors in the measurements, usually related to multipath and non-line-of-sight phenomena. The use of RAIM algorithms is a common approach to solve this issue. A significant amount of the existing GNSS receivers is currently mounted on smart devices, above all, smartphones.
View Article and Find Full Text PDFThe objective of this work is the evaluation of the performances of EGNOS (European Geostationary Navigation Overlay System) augmentation system in maritime navigation by comparing them with those obtained by other positioning methods as Single Point Positioning (SPP) and Differential Global Positioning System (DGPS). Preliminarily, EGNOS performances in an open-sky context were evaluated through static data downloaded by EGNOS RIMS (Ranging and Integrity Monitoring Stations) located in Rome. Then, for the maritime test carried out onboard a boat in the Gulf of Naples, two dual-frequency receivers were used: Xiaomi Mi 8 smartphone and u-blox ZED-F9P multi-band GNSS (Global Navigation Satellite System) receiver, both in kinematic mode.
View Article and Find Full Text PDFThe integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation.
View Article and Find Full Text PDF