Publications by authors named "Antonio Alcami"

Antiviral compounds are crucial to controlling the SARS-CoV-2 pandemic. Approved drugs have been tested for their efficacy against COVID-19, and new pharmaceuticals are being developed as a complementary tool to vaccines. In this work, a cheap and fast purification method for natural tyrosinase from (AbTyr) fresh mushrooms was developed to evaluate the potential of this enzyme as a therapeutic protein the inhibition of SARS-CoV-2 3CLpro protease activity .

View Article and Find Full Text PDF

Poxviruses have evolved a wide array of mechanisms to evade the immune response, and we provide an overview of the different immunomodulatory strategies. Poxviruses prevent the recognition of viral DNA that triggers the immune responses and inhibit signaling pathways within the infected cell. A unique feature of poxviruses is the production of secreted proteins that mimic cytokines and cytokine receptors, acting as decoy receptors to neutralize the activity of cytokines and chemokines.

View Article and Find Full Text PDF

Commercial polyurethane (PU) coating formulations have been modified with 1-(hydroxymethyl)-5,5-dimethylhydantoin (HMD) both in bulk (0.5 and 1% w/w) and onto the coatings surface as an N-halamine precursor, to obtain clear coatings with high virucidal activity. Upon immersion in diluted chlorine bleaching, the hydantoin structure on the grafted PU membranes was transformed into N-halamine groups, with a high surface chlorine concentration (40-43μg/cm).

View Article and Find Full Text PDF

The current global pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has demonstrated the necessity to develop novel materials with antimicrobial and antiviral activities to prevent the infection. One significant route for the spread of diseases is by the transmission of the virus through contact with contaminated surfaces. Antiviral surface treatments can help to reduce or even avoid these hazards.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the diversity of bacteria in the atmospheric boundary layer across twelve different global locations, identifying how various biomes influence this diversity.
  • It finds that atmospheric bacterial diversity negatively correlates with mean annual precipitation, while it positively correlates with mean annual temperature, and highlights unique community structures for both atmosphere and soil at each site.
  • The research emphasizes that local soils play a more significant role than distant soils in shaping atmospheric diversity, especially in semi-arid and arid regions, underscoring the complex interactions in atmospheric microbiota and their impact on ecosystems.
View Article and Find Full Text PDF

Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n = 312) from 24 different wastewater treatment plants were obtained between May 9 (week 19 of 2022) and August 4 (week 31 of 2022).

View Article and Find Full Text PDF

The COVID-19 pandemic highlighted the dangers of airborne pathogen transmission. SARS-CoV-2 is known to be transmitted through aerosols; however, little is known about the dynamics of these aerosols in real environments, the conditions, and the minimum viral load required for infection. Efficiently measuring and capturing pathogens present in the air would help to understand the infection process.

View Article and Find Full Text PDF

Background: The transmission of monkeypox virus occurs through direct contact, but transmission through saliva or exhaled droplets and aerosols has not yet been investigated. We aimed to assess the presence of monkeypox virus DNA and infectious virus in saliva samples and droplets and aerosols exhaled from patients infected with monkeypox virus.

Methods: We did a cross-sectional study in patients with monkeypox confirmed by PCR who attended two health centres in Madrid, Spain.

View Article and Find Full Text PDF

Viruses encode secreted proteins that bind chemokines to modulate their activity. Viral proteins may simultaneously interact with glycosaminoglycans allowing these proteins to be anchored at the cell surface to increase their anti-chemokine activity in the proximity of infection. Here we describe methodology to evaluate the interaction of viral secreted proteins with cell-surface glycosaminoglycans by immunofluorescence and detection by flow cytometry or microscopy.

View Article and Find Full Text PDF

The application of CRISPR/Cas9 to improve genome engineering efficiency for large dsDNA viruses has been extensively described, but a robust and versatile method for high-throughput generation of marker-free recombinants for a desired locus has not yet been reported. Cytoplasmic-replicating viruses use their own repair enzymes for homologous recombination, while nuclear-replicating viruses use the host repair machinery. This is translated into a wide range of Cas9-induced homologous recombination efficiencies, depending on the virus replication compartment and viral/host repair machinery characteristics and accessibility.

View Article and Find Full Text PDF

The experience of COVID19 pandemic has demonstrated the real concern of biological agents dispersed in the air and surfaces environments. Therefore, the need of a fast and large-scale disinfection method has arisen for prevention of contagion. COUNTERFOG® is an innovative technology developed for large-scale decontamination of air and surfaces.

View Article and Find Full Text PDF

Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF-based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors.

View Article and Find Full Text PDF
Article Synopsis
  • Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are common pathogens that can remain dormant in the nervous system and were once thought to have low genetic diversity during replication.
  • Recent research using high-throughput sequencing shows that these viruses actually possess a broad range of genetic variants, resembling the diversity seen in RNA viruses, contradicting earlier beliefs about their stability.
  • Experiments demonstrated that both HSV-1 and HSV-2 increase their minor genetic variants under culture conditions over time, with HSV-2 exhibiting a greater rise in nonconservative variants, potentially contributing to their evolutionary differences.
View Article and Find Full Text PDF

Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre.

View Article and Find Full Text PDF

Herpes simplex virus serotype 2 (HSV-2) is a ubiquitous human pathogen that causes recurrent genital infections and ulcerations. Many HSV-2 strains with different biological properties have been identified, but only the genomes of HSV-2 strains HG52, SD90e and 333 have been reported as complete and fully characterized sequences. We assembled, annotated and manually curated the complete genome sequence of HSV-2 strain MS, a highly neurovirulent strain, originally isolated from a multiple sclerosis patient.

View Article and Find Full Text PDF

Glycoprotein G (gG) from herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) functions as a viral chemokine binding protein (vCKBP). Soluble recombinant forms of gG of HSV-1 and HSV-2 (SgG1 and SgG2, respectively) enhance chemokine-mediated leukocyte migration, in contrast to most known vCKBPs, including those from animal alpha-herpesviruses. Furthermore, both proteins bind to nerve growth factor (NGF), but only SgG2 enhances NGF-dependent neurite outgrowth.

View Article and Find Full Text PDF

Ectromelia virus (ECTV) causes mousepox, a surrogate mouse model for smallpox caused by variola virus in humans. Both orthopoxviruses encode tumor necrosis factor receptor (TNFR) homologs or viral TNFR (vTNFR). These homologs are termed cytokine response modifier (Crm) proteins, containing a TNF-binding domain and a chemokine-binding domain called smallpox virus-encoded chemokine receptor (SECRET) domain.

View Article and Find Full Text PDF

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines.

View Article and Find Full Text PDF

Cells contain numerous immune sensors to detect virus infection. The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and activates innate immune responses via stimulator of interferon genes (STING), but the impact of DNA sensing pathways on host protective responses has not been fully defined. We demonstrate that cGAS/STING activation is required to resist lethal poxvirus infection.

View Article and Find Full Text PDF

During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth.

View Article and Find Full Text PDF