Am J Physiol Endocrinol Metab
November 2006
Metabolically healthy skeletal muscle possesses the ability to switch easily between glucose and fat oxidation in response to homeostatic signals. In type 2 diabetes mellitus and obesity, the skeletal muscle shows a great reduction in this metabolic flexibility. A substrate like dodecanedioic acid (C-12), able to increase skeletal muscle glycogen stores via succinyl-CoA formation, might both postpone the fatigue and increase fatty acid utilization, since it does not affect insulin secretion.
View Article and Find Full Text PDFBackground: Cardiovascular and metabolic comorbidities are dramatically increased in severe obesity, a condition highly resistant to nonsurgical therapy.
Objective: The objective was to identify predictors of weight loss and reversal of comorbidity in obese patients undergoing malabsorptive bariatric surgery.
Design: Morbidly obese men and women (n = 107) were studied before and 2 y after biliopancreatic diversion (BPD).
Objective: To evaluate the relationship between fasting plasma concentrations of ghrelin and gastric emptying in obese individuals compared with lean subjects.
Research Methods And Procedures: We included 20 obese patients (9 men and 11 women, BMI > 30 kg/m2) and 16 nonobese control subjects (7 men and 9 women, BMI < or = 25 kg/m2). Gastric emptying of solids (egg sandwich labeled with radionuclide) was measured at 120 minutes with (99m)Tc-single photon emission computed tomography imaging.
Objective: To investigate the effect of fat mass (FM) reduction on adipose tissue gene expression in terms of lipid synthesis [sterol regulatory binding protein 1c (SREBP-1c)] and lipid oxidation [uncoupling protein 2 (UCP-2)] 2 years after lipid malabsorption and to assess the influence of lipid malabsorption on fat-free mass (FFM) maintenance evaluating the expression of genes related to glycolysis [hexokinase (HKII)] and glucose storage [glycogen synthase (GS)].
Research Method And Procedures: SREBP-1c, UCP-2, HKII, and GS mRNA expression were studied by reverse transcriptase-competitive polymerase chain reaction in 10 massively obese subjects before and 2 years after bilio-pancreatic diversion (BPD). Body composition was assessed by isotopic dilution method and insulin sensitivity by euglycemic-hyperinsulinemic clamp.
To assess the effects of acute dietary saturated fat intake on glucose-induced insulin secretion rate (ISR), measured by the C-peptide deconvolution method, and on insulin clearance and sensitivity, five obese and five normal-weight women (controls) were studied after either a 100 g oral butter load or a 100 ml water load. At 120 min after the oral load a hyperglycaemic clamp was performed over 180 min. A dramatic increase of ISR occurred after butter compared with the water challenge in the controls (1305.
View Article and Find Full Text PDFInsulin uptake and degradation is a complex and not yet completely understood process involving not only insulin sensitive tissues. The most important degradative system is insulin degrading enzyme which is a highly conserved metalloendopeptidase requiring Zn(++) for its proteolytic action, although protein disulfide isomerase and cathepsin D are also involved in insulin metabolism. The liver and the kidney are the principal sites for insulin clearance.
View Article and Find Full Text PDFThe present study was aimed at evaluating the feasibility and reliability of lower limb skeletal muscle (SM) mass estimates obtained by bioimpedance analysis (BIA). BIA estimates were compared with the estimates obtained by dual-energy X-ray absorptiometry (DXA). Ten normal weight and 10 obese women had BIA and DXA evaluations.
View Article and Find Full Text PDF