This narrative review provides a comprehensive analysis of the several methods and technologies employed to measure handgrip strength (HGS), a significant indicator of neuromuscular strength and overall health. The document evaluates a range of devices, from traditional dynamometers to innovative sensor-based systems, and assesses their effectiveness and application in different demographic groups. Special attention is given to the methodological aspects of HGS estimation, including the influence of device design and measurement protocols.
View Article and Find Full Text PDFThe structural collapse of a street lighting pole represents an aspect that is often underestimated and unpredictable, but of relevant importance for the safety of people and things. These events are complex to evaluate since several sources of damage are involved. In addition, traditional inspection methods are ineffective, do not correctly quantify the residual life of poles, and are inefficient, requiring enormous costs associated with the vastness of elements to be investigated.
View Article and Find Full Text PDFAssessment of the freshness of hen eggs destinated to human consumption is an extremely important goal for the modern food industry and sale chains, as eggs show a rapid natural aging which also depends on the storage conditions. Traditional techniques, such as candling and visual observation, have some practical limitations related to the subjective and qualitative nature of the analysis. The main objective of this paper is to propose a robust and automated approach, based on the use of pulsed phase thermography (PPT) and image processing, that can be used as an effective quality control tool to evaluate the freshness of eggs.
View Article and Find Full Text PDFIn the field of Smart Cities, especially for Smart Street Lighting and Smart Mobility, the use of low-cost devices is considered an advantageous solution due to their easy availability, cost reduction and, consequently, technological and methodological development. However, this type of transducers shows many critical issues, e.g.
View Article and Find Full Text PDFMarine pollution due to spillage of hydrocarbons represents a well-known current environmental problem. In order to recover the otherwise wasted oils and to prevent pollution damage, polyurethane foams are considered suitable materials for their ability to separate oils from sea-water and for their reusability. In this work we studied polyurethane foams filled with carbon nanofibers, in varying amounts, aimed at enhancing the selectivity of the material towards the oils and at improving the mechanical durability of the foam.
View Article and Find Full Text PDFIn the present work, a spar-buoy scaled model was designed and built through a "Lab-on-Sea" unit, equipped with an energy harvesting system. Such a system is based on deformable bands, which are loyal to the unit, to convert wave motion energy into electricity by means of piezo patch transducers. In a preliminary stage, the scaled model, suitable for tests in a controlled ripples-type wave motion channel, was tested in order to verify the "fixed-point" assumption in pitch and roll motions and, consequently, to optimize energy harvesting.
View Article and Find Full Text PDFDigital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate.
View Article and Find Full Text PDFPiezoelectric energy harvesters (PEHs) are a reduced, but fundamental, source of power for embedded, remote, and no-grid connected electrical systems. Some key limits, such as low power density, poor conversion efficiency, high internal impedance, and AC output, can be partially overcome by matching their internal electrical impedance to that of the applied resistance load. However, the applied resistance load can vary significantly in time, since it depends on the vibration frequency and the working temperature.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2018
Biomedical grade UHMWPE double lap joint, welded by a diode laser, has been mechanically characterized by static and dynamic tests. A nanocomposite sheet (UHMWPE filled with low carbon nanoparticles amount) was interposed between two polymeric sheets in order to absorb the laser light, sealing the sheets by means of a melting process. Fatigue test has been performed in the joint with 0.
View Article and Find Full Text PDFElectrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented.
View Article and Find Full Text PDF