AbstractMany animals lay their eggs in clusters. Eggs on the periphery of clusters can be at higher risk of mortality. We asked whether the most commonly occurring clutch sizes in pentatomid bugs could result from geometrical arrangements that maximize the proportion of eggs in the cluster's interior.
View Article and Find Full Text PDFCurr Opin Insect Sci
December 2023
Floral nectar is frequently colonized by microbes among which bacteria and yeasts are the most abundant. These microbes have the ability to alter nectar characteristics with consequences for the whole community of flower-visiting insects. Recent research carried out on natural enemies of insect herbivores has shown that microbe-mediated changes in nectar traits can influence the foraging behavior and life history traits of parasitoids.
View Article and Find Full Text PDFEgg parasitoids of herbivorous insects use an interplay of short- and long-range chemical cues emitted by hosts and host plants to find eggs to parasitize. Volatile compounds that attract egg parasitoids can be identified via behavioral assays and used to manipulate parasitoid behavior in the field for biological control of herbivorous pests. However, how and when a particular cue will be used varies over the life of an individual, as well as at and below species level.
View Article and Find Full Text PDFCompetition for hosts is a common ecological interaction in insect parasitoids. In the recent years, it has become increasingly evident that microorganisms can act as 'hidden players' in parasitoid ecology. In this review, we propose that parasitoid competition should take into consideration the microbial influence.
View Article and Find Full Text PDFAlthough microbial communities of insects from larval to adult stage have been increasingly investigated in recent years, little is still known about the diversity and composition of egg-associated microbiomes. In this study, we used high-throughput amplicon sequencing and quantitative PCR to get a better understanding of the microbiome of insect eggs and how they are established using the Southern green stinkbug Nezara viridula (L.) (Hemiptera: Pentatomidae) as a study object.
View Article and Find Full Text PDFAnnu Rev Entomol
January 2023
Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids.
View Article and Find Full Text PDFFloral nectar is ubiquitously colonized by a variety of microorganisms among which yeasts and bacteria are the most common. Microorganisms inhabiting floral nectar can alter several nectar traits, including nectar odor by producing microbial volatile organic compounds (mVOCs). Evidence showing that mVOCs can affect the foraging behavior of insect pollinators is increasing in the literature, whereas the role of mVOCs in altering the foraging behavior of third-trophic level organisms such as insect parasitoids is largely overlooked.
View Article and Find Full Text PDFBackground: Interspecific competition in insect parasitoids is an important ecological phenomenon that has relevant implications for biological pest control. To date, interspecific intrinsic (=larval) competition has been intensively studied, while investigations on extrinsic (=adult) competition have often lagged behind. In this study we examined the role played by parasitoid reproductive traits and host clutch size on the outcome of extrinsic competition between Trissolcus basalis (Wollaston) and Ooencyrtus telenomicida (Vassiliev), two egg parasitoids of the pest Nezara viridula (L).
View Article and Find Full Text PDFCurr Opin Insect Sci
February 2022
Insect herbivores interact via plant-mediated interactions in which one herbivore species induces changes in plant quality that affects the performance of a second phytophagous insect that shares the food plant. These interactions are often asymmetric due to specificity in induced plant responses to herbivore attack, amount of plant damage, elicitors in herbivore saliva and plant organ damaged by herbivores. Parasitoids and their symbiotic polydnaviruses alter herbivore physiology and behaviour and may influence how plants respond to parasitized herbivores.
View Article and Find Full Text PDFHyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae.
View Article and Find Full Text PDFThere is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour.
View Article and Find Full Text PDFThe quality of hosts for a parasitoid wasp may be influenced by attributes such as host size or species, with high quality for successful development usually coincident with high quality for larger offspring. This is not always the case: for the Scelionid wasp Trissolcus basalis, oviposition in eggs of the Brown Marmorated Stink Bug, Halyomorpha halys, rather than of the normal host, the Southern Green Stink Bug, Nezara viridula, leads to lower offspring survival, but survivors can be unusually large. Adult female T.
View Article and Find Full Text PDFPlant growth-promoting fungi belonging to genus Trichoderma are known to help plants when dealing with biotic stressors by enhancing plant defenses. While beneficial effects of Trichoderma spp. against plant pathogens have long been documented, fewer studies have investigated their effect on insect pests.
View Article and Find Full Text PDFInsect hyperparasitoids are fourth trophic level organisms that commonly occur in terrestrial food webs, yet they are relatively understudied. These top-carnivores can disrupt biological pest control by suppressing the populations of their parasitoid hosts, leading to pest outbreaks, especially in confined environments such as greenhouses where augmentative biological control is used. There is no effective eco-friendly strategy that can be used to control hyperparasitoids.
View Article and Find Full Text PDFParasitoids depend on other insects for the development of their offspring. Their eggs are laid in or on a host insect that is consumed during juvenile development. Parasitoids harbor a diversity of microbial symbionts including viruses, bacteria, and fungi.
View Article and Find Full Text PDFInsects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels.
View Article and Find Full Text PDFInsect parasitoids are under selection pressure to optimize their host location strategy in order to maximize fitness. In parasitoid species that develop on host eggs, one of these strategies consists in the exploitation of oviposition-induced plant volatiles (OIPVs), specific blends of volatile organic compounds released by plants in response to egg deposition by herbivorous insects. Plants can recognize insect oviposition via elicitors that trigger OIPVs, but very few elicitors have been characterized so far.
View Article and Find Full Text PDFPlants damaged by herbivores are known to release odors attracting parasitoids. However, there is currently no information how leguminous plants damaged by the pod borer attract the exotic larval parasitoid , which was imported into Benin from the putative area of origin of the pod borer in tropical Asia for assessing its potential as a biological control agent. In this study, we used Y-tube olfactometer bioassays to investigate response towards odors emitted by four -damaged host plants: cowpea , the most important cultivated host, and the naturally occurring legumes and .
View Article and Find Full Text PDFAlthough consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive.
View Article and Find Full Text PDFMicrobial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant-insect interactions. Although plant-associated and herbivore-associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third-trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development.
View Article and Find Full Text PDF