Publications by authors named "Antonino Cataldo"

In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature.

View Article and Find Full Text PDF

Face masks can filter droplets containing viruses and bacteria minimizing the transmission and spread of respiratory pathogens but are also an indirect source of microbes transmission. A novel antibacterial and antiviral Ag-coated polypropylene surgical mask obtained through the and one-step deposition of metallic silver nanoparticles, synthesized by silver mirror reaction combined with sonication or agitation methods, is proposed in this study. SEM analysis shows Ag nanoparticles fused together in a continuous and dense layer for the coating obtained by sonication, whereas individual Ag nanoparticles around 150 nm were obtained combining the silver mirror reaction with agitation.

View Article and Find Full Text PDF

This paper explores the potential of a low-cost, advanced video-based technique for the assessment of structural damage to buildings caused by seismic loading. A low-cost, high-speed video camera was utilized for the motion magnification processing of footage of a two-story reinforced-concrete frame building subjected to shaking table tests. The damage after seismic loading was estimated by analyzing the dynamic behavior (i.

View Article and Find Full Text PDF

In recent years, the ENEA has introduced a novel methodology based on motion magnification (MM) into the Italian cultural heritage protection and monitoring field. It consists of a digital video signal processing technique able to amplify enormously the tiny movements recorded in conventional videos, while preserving the general topology of the acquired frames. Though the idea of such a methodology is not new, it has recently been provided with an efficient algorithm that makes possible a viable and low-cost magnification.

View Article and Find Full Text PDF

Water pollution is nowadays a global problem and the effective detection of pollutants is of fundamental importance. Herein, a facile, efficient, robust, and rapid (response time < 2 min) method for the determination of important quinone-based industrial pollutants such as hydroquinone and benzoquinone is reported. The recognition method is based on the use of screen-printed electrodes as sensing platforms, enhanced with carbon-based nanomaterials.

View Article and Find Full Text PDF

As part of a biopolymer matrix, pectin was investigated to obtain an engineered jam, due to its biodegradability. Only a few examples of pectin-based nanocomposites are present in the literature, and even fewer such bionanocomposites utilize nanocarbon as a filler-mostly for use in food packaging. In the present paper, ecofriendly nanocomposites made from household reagents and displaying multiple properties are presented.

View Article and Find Full Text PDF

The use of carbon nanomaterials (CNMs) in sensors and biosensor realization is one of the hottest topics today in analytical chemistry. In this work, a comparative in-depth study, exploiting different nanomaterial (MWNT-COH, -NH, -OH and GNP) modified screen-printed electrodes (SPEs), is reported. In particular, the sensitivity, the heterogeneous electron transfer constant (k), and the peak-to-peak separation (ΔE) have been calculated and analyzed.

View Article and Find Full Text PDF

Background: The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery.

View Article and Find Full Text PDF

Two-dimensional materials, such as transition-metal dichalcogenides (TMDs), are attractive candidates for sensing applications due to their high surface-to-volume ratio, chemically active edges, and good electrical properties. However, their electrical response to humidity is still under debate and experimental reports remain inconclusive. For instance, in different studies, the impedance of MoS-based sensors has been found to either decrease or increase with increasing humidity, compromising the use of MoS for humidity sensing.

View Article and Find Full Text PDF

Carbon forms (graphite, pyrolytic graphite, highly oriented pyrolytic graphite (HOPG), glassy carbon, carbon foam, graphene, buckypaper, etc) are a wide class of materials largely used in technology and energy storage. The huge request of carbon compounds with reliable and tunable physical and chemical properties is tackled by contriving new production protocols and/or compound functionalizations. To achieve these goals, new samples must be tested in a trial-and-error strategy with techniques that provide information in terms of both specimen quality and properties.

View Article and Find Full Text PDF

The synthesis of graphene-based materials has attracted considerable attention in drug delivery strategies. Indeed, the conductivity and mechanical stability of graphene have been investigated for controlled and tunable drug release via electric or mechanical stimuli. However, the design of a thermo-sensitive scaffold using pristine graphene (without distortions related to the oxidation processes) has not been deeply investigated yet, although it may represent a promising approach for several therapeutic treatments.

View Article and Find Full Text PDF

A novel family of nanocarbon-based materials was designed, synthesized, and probed within the context of charge-transfer cascades. We integrated electron-donating ferrocenes with light-harvesting/electron-donating (metallo)porphyrins and electron-accepting graphene nanoplates (GNP) into multicomponent conjugates. To control the rate of charge flow between the individual building blocks, we bridged them via oligo-p-phenyleneethynylenes of variable lengths by β-linkages and the Prato-Maggini reaction.

View Article and Find Full Text PDF

A valid option to bypass the obstacle represented by the blood-brain barrier (BBB) in brain delivery is the use of the unconventional intranasal route of administration. The treatment of depressive diseases, resulting from the depletion of a neurotransmitter in the inter-synaptic space, such as serotonin, is indirectly treated using molecules that can permeate the BBB unlike the latter. In the present article, a set of nanovectors were produced using a mucoadhesive biopolymer, alginate (Alg).

View Article and Find Full Text PDF

This paper deals with the electrochemical characterization and the equivalent circuit modeling of screen-printed electrodes, modified by an epoxy composite and loaded with carbon nanotubes (CNTs), pristine and functionalized NH, and graphene nanoplates (GNPs). The fabrication method is optimized in order to obtain a good dispersion even at high concentration, up to 10%, to increase the range of investigation. Due to the rising presence of filler on the surface, the cyclic voltammetric analysis shows an increasing of (i) electrochemical response and (ii) filler concentration as observed by the scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Nowadays, a deep knowledge of procedures of synthesis of nanostructured materials plays an important role in achieving nano-materials with accurate and wanted properties and performances. Carbon-based nanostructured materials continue to attract a huge amount of research efforts, because of their wide-ranging properties. Using X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy in the soft X-ray regime, by the synchrotron radiation, we studied the L3,2 absorption edges of iron (Fe) nanoparticles, when they are embedded in oriented Multi Wall Carbon Nanotube (MWCNTs) layers grown by thermal Chemical Vapor Deposition (CVD) technique catalyzed by this transition metal.

View Article and Find Full Text PDF

Thermal diffusivity of (graphene nano-platelets) is an important thermo-physical property as it is useful to predict the material behavior in many heat transfer applications. samples were pressed at different loads to obtain different densities, and then thermal diffusivity was measured with the flash method. All samples were coated with a thin layer (~1 µm) of colloidal graphite (Aquadag) on both sides to reduce reflectance of their surfaces and consequently increase the emissivity.

View Article and Find Full Text PDF